
W321/341 Linux Software Manual

Eleventh Edition, May 2013

www.moxa.com/product

© 2013 Moxa Inc. All rights reserved.

W321/341 Linux Software Manual

The software described in this manual is furnished under a license agreement and may be used only in accordance with
the terms of that agreement.

Copyright Notice

© 2013 Moxa Inc. All rights reserved.

Trademarks

The MOXA logo is a registered trademark of Moxa Inc.
All other trademarks or registered marks in this manual belong to their respective manufacturers.

Disclaimer

Information in this document is subject to change without notice and does not represent a commitment on the part of
Moxa.

Moxa provides this document as is, without warranty of any kind, either expressed or implied, including, but not limited
to, its particular purpose. Moxa reserves the right to make improvements and/or changes to this manual, or to the
products and/or the programs described in this manual, at any time.

Information provided in this manual is intended to be accurate and reliable. However, Moxa assumes no responsibility for
its use, or for any infringements on the rights of third parties that may result from its use.

This product might include unintentional technical or typographical errors. Changes are periodically made to the
information herein to correct such errors, and these changes are incorporated into new editions of the publication.

Technical Support Contact Information

www.moxa.com/support

Moxa Americas
Toll-free: 1-888-669-2872
Tel: +1-714-528-6777
Fax: +1-714-528-6778

 Moxa China (Shanghai office)
Toll-free: 800-820-5036
Tel: +86-21-5258-9955
Fax: +86-21-5258-5505

Moxa Europe
Tel: +49-89-3 70 03 99-0
Fax: +49-89-3 70 03 99-99

 Moxa Asia-Pacific
Tel: +886-2-8919-1230
Fax: +886-2-8919-1231

Table of Contents

1. Introduction .. 1-1
Overview ... 1-2
Software Architecture .. 1-2

Journaling Flash File System (JFFS2) ... 1-3
Software Package .. 1-4

2. Getting Started.. 2-1
Accessing the W321/341 Using a PC ... 2-2

Serial Console ... 2-2
SSH Console ... 2-2

Configuring the Ethernet Interface .. 2-3
Modifying Network Settings with the Serial Console ... 2-3
Temporarily Modifying Networking Configurations .. 2-4

Configuring the WLAN ... 2-4
Using WPA_SUPPLICANT to configure WPA2 ... 2-5

SD Slot and USB for Storage Expansion ... 2-11
Test Program—Developing Hello.c ... 2-13

Installing the Tool Chain (Linux) .. 2-13
Checking the Flash Memory Space ... 2-13
Compiling Hello.c .. 2-14
Uploading and Running the “Hello” Program ... 2-14

Developing Your First Application .. 2-15
Testing Environment .. 2-15
Compiling tcps2.c .. 2-15
Uploading and Running the “tcps2-release” Program .. 2-16
Testing Procedure Summary ... 2-17

3. Managing Embedded Linux .. 3-1
System Version Information ... 3-2
System Image Backup ... 3-2

Upgrading the Firmware ... 3-2
Loading Factory Defaults .. 3-5

Enabling and Disabling Daemons .. 3-5
Setting the Run-Level .. 3-7
Adjusting the System Time .. 3-8

Setting the Time Manually .. 3-8
NTP Client .. 3-8
Updating the Time Automatically ... 3-9

Cron—Daemon to Execute Scheduled Commands ... 3-10
Connecting Storage Peripherals .. 3-11

4. Managing Communications ... 4-1
FTP ... 4-2
SFTP ... 4-2
DNS .. 4-2
IPTABLES .. 4-3
NAT .. 4-7

NAT Example .. 4-8
Enabling NAT at Bootup ... 4-8

Dial-up Service—PPP ... 4-9
PPPoE .. 4-12
NFS (Network File System) .. 4-14

Setting up the W321/341 as an NFS Client ... 4-14
SNMP .. 4-14
OpenVPN ... 4-16

5. Tool Chains for Application Development .. 5-1
Linux Tool Chain ... 5-2

Steps for Installing the Linux Tool Chain .. 5-2
Compilation for Applications .. 5-2

6. Programmer's Guide ... 6-1
Flash Memory Map .. 6-2
Device API ... 6-2
RTC (Real Time Clock) ... 6-2
Buzzer ... 6-2
WDT (Watch Dog Timer) .. 6-3
Digital Input/Output(W321 only) .. 6-6

Application Programming Interface .. 6-6
DI/DO Program Makefile Example .. 6-10

UART .. 6-11

Relay Output (W341 only) ... 6-12
7. Software Lock ... 7-1
A. System Commands .. A-1

Linux normal command utility collection .. A-1
File Manager ... A-1
Editor .. A-1
Network ... A-2
Process .. A-2
Modules ... A-2
Other ... A-3
Moxa Special Utilities ... A-3

1
1. Introduction

The Moxa W321/341 devices are RISC-based 802.11b/g/n (wireless) ready-to-run embedded computers with
one 10/100 Mbps Ethernet port, an internal SD socket, two or four RS-232/422/485 serial ports, two USB 2.0
hosts, one relay output channel,four DIs, four DOs, and a pre-installed Linux operating system. W321/341
computers offer high performance communication and unlimited storage in a super compact, palm-size ARM9
box. Moxa’s W321/341 series of embedded computers are the right solution for high performance embedded
applications requiring a large amount of memory that must be deployed in hard-to-wire and/or small spaces.

The following topics are covered in this chapter:

 Overview

 Software Architecture

 Journaling Flash File System (JFFS2)

 Software Package

W321/341 Linux Introduction

 1-2

Overview
Moxa’s W321/341 wireless embedded computers support 802.11b/g/n wireless LAN with WPA2 data
encryption for secure transmission tunnels over a WLAN.

Moxa’s W321/341 embedded computers use our proprietary ART 192 Mhz RISC CPU. Unlike the X86 CISC CPU,
the RISC architecture provides our embedded computers with powerful computing and communication
functions without generating a lot of heat. A 16 MB NOR Flash ROM and on-board SDRAM (64 MB for W341 and
32 MB for W321) give enough memory to install application software directly on the embedded computer. In
addition, a LAN port and WLAN port are built right into the RISC CPU. This onboard networking, in combination
with our embedded serial interfaces, make the W321/341 series an ideal communication platform for data
acquisition and industrial control applications.

Moxa’s pre-installed Linux operating system (OS) provides an open platform for easier application
development. Software written for desktop PCs can be easily ported to the computer with the GNU cross
compiler. The OS, device drivers (e.g., serial and buzzer control), and custom applications can all be stored in
the onboard NOR flash memory.

Software Architecture
The pre-installed W321/341 Linux operating system follows the standard POSIX architecture. Program porting
is done with the GNU tool chain (provided by Moxa). In addition to standard POSIX APIs, device drivers for USB
storage, onboard buzzers, network controls, and UART are also included.

The W321/341’s built-in flash ROM is divided into Boot Loader, Linux Kernel, Root File
System, and User partitions.

In order to prevent user applications from crashing the root file system, the W321/341 uses a specially
designed root file tree with protected configuration. This file system comes with serial and Ethernet
communication pre-enabled so that users may conveniently load the factory default drive image. All user
data, settings, and third-party applications are stored on the user directory partition.

To improve system reliability, the W321/341 has a built-in mechanism that prevents the system from crashing.
When the Linux kernel boots up, the kernel will mount the root file system as read only, and then enable
services and daemons. At the same time, the kernel will start searching for system configuration parameters
in the rc/inittab directories.

W321/341 Linux Introduction

 1-3

Because the root file system is protected and cannot be changed by the user, a “safe” zone is created which
makes it very difficult for the base OS to become corrupted by anything other than hardware faults. Generally
speaking, user behavior or normal read-write operations will not affect the root OS.

For more information about the memory map and programming, refer to Chapter 6 in the Programmer’s
Guide.

Journaling Flash File System (JFFS2)
The root file system and user directories in the flash memory are formatted with the Journaling Flash File
System (JFFS2). This file system creates a compressed file tree in the flash memory that is is completely
transparent to the user, and behaves as if it were an ordinary file sytem installed on a hard disk.

The Journaling Flash File System (JFFS2) was developed by Axis Communications in Sweden; it creates a file
system directly on the flash, instead of emulating a block device. It is designed for use on flash-ROM chips and
recognizes the special write requirements of a flash-ROM chip. JFFS2 implements wear-leveling to extend the
life of the flash disk, and stores the flash directory structure in the RAM. A log-structured file system is
maintained at all times, so that the system is always consistent, even if it crashes or other improper
power-downs. Because of these featuers, JFFS2 does not require fsck (file system check) on boot-up.

JFFS2 is the newest version of JFFS. It provides improved wear-leveling and garbage-collection performance,
improved RAM footprint and response to system-memory pressure, improved concurrency and support for
suspending flash erases, marking of bad sectors with continued use of the remaining good sectors (enhancing
the write-life of the devices), native data compression inside the file system design, and support for hard links.

The key features of JFFS2 are:

• It targets the Flash ROM directly

• Robustness

• Consistency across power failures

• No integrity scan (fsck) is required at boot time, or after either normal or abnormal shutdown

• Explicit wear leveling

• Transparent compression

Although JFFS2 is a journaling file system, this does not preclude the loss of data. The file system will remain
in a consistent state across power failures and will always be mountable. However, if the board is powered
down during a write then the incomplete write will be rolled back on the next boot; only completed writes will
not be affected.

Additional information about JFFS2 is available at:

http://sources.redhat.com/jffs2/jffs2.pdf
http://developer.axis.com/software/jffs/
http://www.linux-mtd.infradead.org/

http://www.linux-mtd.infradead.org/

W321/341 Linux Introduction

 1-4

Software Package
Boot Loader Moxa Boot Loader (v1.0.0.0)

Kernel Linux 2.6.38

Protocol Stack ARP, PPP, CHAP, PAP, IPv4, ICMP, TCP, UDP, DHCP, FTP, SNMP V1, NTP, NFS, SSH
1.0/2.0, SSL, Telnet, PPPoE, OpenVPN

File System JFFS2, NFS, Ext2, Ext3, VFAT/FAT

OS shell command Bash

Busybox Linux normal command utility collection

Utilities
tinylogin login and user manager utility

telnet telnet client program

ftp FTP client program

smtpclient email utility

scp Secure file transfer Client Program

Daemons
pppd dial in/out over serial port daemon

snmpd snmpd agent daemon

inetd TCP server manager program

ftpd ftp server daemon

sshd secure shell server

sftp Secure File Transfer Protocol,

openvpn virtual private network

openssl open SSL

Linux Tool Chain
Gcc (V4.4.2) C/C++ PC Cross Compiler

Glibc(V2.10.1) POSIX standard C library

2
2. Getting Started

In this chapter, we explain how to connect the W321/341, how to turn on the power, how to get started
programming, and how to use the W321/341’s other functions.

The following topics are covered in this chapter:

 Accessing the W321/341 Using a PC

 Serial Console

 SSH Console

 Configuring the Ethernet Interface

 Modifying Network Settings with the Serial Console

 Temporarily Modifying Networking Configurations

 Configuring the WLAN

 Using WPA_SUPPLICANT to configure WPA2

 SD Slot and USB for Storage Expansion

 Test Program—Developing Hello.c

 Installing the Tool Chain (Linux)

 Checking the Flash Memory Space

 Compiling Hello.c

 Uploading and Running the “Hello” Program

 Developing Your First Application

 Testing Environment

 Compiling tcps2.c

 Uploading and Running the “tcps2-release” Program

 Testing Procedure Summary

W321/341 Linux Getting Started

 2-2

Accessing the W321/341 Using a PC
There are two ways to connect the W321/341 to a PC: through the serial console and over the network, by SSH.

Serial Console
The serial console gives users a convenient way of connecting to the W321/341. This method is particularly
useful when configuring the computer for the first time, or when an operator does not know either of the two
IP addresses.

To access the default console, use the serial port settings shown below:

Baudrate 115200 bps

Parity None

Data bits 8

Stop bits: 1

Flow Control None

Terminal VT100

Once the connection is established, you can start using W321/341.

ATTENTION

Serial Console Reminder
Remember to choose VT100 as the terminal type. Use the cable CBL-4PINDB9F-100, which comes with the
W321/341, to connect to the serial console port.

SSH Console
Moxa W321/341 computers also feature an SSH-accessible console, secure network accessibility. To access the
SSH console using a Microsoft Windows interface, Moxa recommends using the open source PuTTY

Windows Users

To download PuTTY Click on the
link http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html (free software) to set up an SSH
console for the W321/341 in a Windows environment. The following figure shows a simple example of the
configuration that is required.

W321/341 Linux Getting Started

 2-3

Linux Users

Linux users can connect directly to the console using the “ssh” command over the address below.

#ssh 192.168.3.127

Select yes to complete the connection.

[root@bee_notebook root]# ssh 192.168.3.127
The authenticity of host ‘192.168.3.127 (192.168.3.127)’ can’t be established.
RSA key fingerprint is 8b:ee:ff:84:41:25:fc:cd:2a:f2:92:8f:cb:1f:6b:2f.
Are you sure you want to continue connection (yes/no)? yes_

Configuring the Ethernet Interface
The network settings of the W321/341 can be modified with the serial console port or over the network using
SSH.

Modifying Network Settings with the Serial Console
In this section, we use the serial console to configure the network settings of the target computer.

1. Follow the instructions given in the previous section to access the console using SSH, and then type

#cd /etc/network

to change to the networking configuration directory

2. #vi interfaces

will call up the interfaces configuration file in the VI editor, allowing you to edit the network interface
settings. You can configure the Ethernet ports of the W321/341 for static or dynamic (DHCP) IP
addresses.

Default Setting for LAN1 Dynamic Setting using DHCP

W321/341 Linux Getting Started

 2-4

LAN is ethernet
WLAN is Wi-Fi interface

embedded ethernet LAN1
iface eth0 inet static
 address 192.168.3.127
 network 192.168.3.0
 netmask 255.255.255.0
 broadcast 192.168.3.255

embedded Wi-Fi interface
iface wlan0 inet static
 address 192.168.4.127
 network 192.168.4.0
 netmask 255.255.255.0
 broadcast 192.168.4.255

LAN is ethernet
WLAN is Wi-Fi interface

embedded ethernet LAN1
iface eth0 inet dhcp

embedded Wi-Fi interface
iface wlan0 inet dhcp

 Please note that eth0 stands for the LAN port, while wlan0 stands for the wireless LAN port.
Static IP addresses

As shown in the table above, for static IP configurations 4 settings must be modified: address, network,
netmask, and broadcast. The default IP address for LAN1 is 192.168.3.127, with default netmask of
255.255.255.0.

Dynamic IP addresses

The W321/341 is configured by default for static IP addresses. To configure one or both LAN ports to
request an IP address dynamically, replace static with dhcp and then comment out the address, network,
netmask, and broadcast lines by adding a hash mark (#) in the very first space on each line

3. After the boot settings of the LAN interface have been modified, save the file by hitting esc + w + enter

(in succession), close VI, and then issue the following command to activate the LAN settings immediately:

#/etc/init.d/networking restart

NOTE After changing the IP settings, use the networking restart command to activate the new IP address.

Temporarily Modifying Networking Configurations
IP settings can be changed on-the-fly, but the new settings will not available on boot-up without modifying
the /etc/network/interfaces configuration file.

For example, by typing the command
#ifconfig eth0 192.168.27.115

the IP address of LAN1 may be changed to 192.168.27.115. However, the change will only take effect after a
re-start of the interface, and will not remain in effect after the next system boot.

Configuring the WLAN
The W321/341 Wi-Fi connection can be configured using the configuration file or the wpa_supplicant
command.We strongly recommend you use wpa_supplicant to configure the wireless interface. Other
commands might have compatilibty issues.

You can list the available wireless network IDs by issuing the following command:

#iwpriv wlan0 get_site_survey

W321/341 Linux Getting Started

 2-5

root@Moxa:# iwpriv wlan0 get_site_survey
wlan0 get_site_survey:
Ch SSID BSSID Security Siganl(%)W-Mode ExtCH NT
1 MIS-WAP-1 50:67:f0:61:2d:7a WEP 55 11b/g NONE In

If you want to get more detailed info, type the following command:

#iwlist wlan0 scanning

root@Moxa:# iwlist wlan0 scanning
wlan0 Scan completed :
 Cell 01 - Address: 50:67:F0:61:2D:7A
 Protocol:802.11b/g
 ESSID:"MIS-WAP-1"
 Mode:Managed
 Frequency:2.412 GHz (Channel 1)
 Quality=81/100 Signal level=-58 dBm Noise level=-92 dBm
 Encryption key:on
 Bit Rates:54 Mb/s

NOTE W321/341 only supports 2.4GHz Wi-Fi, which means only 802.11 b/g/n with 2.4GHz is available.

Using WPA_SUPPLICANT to configure WPA2
This embedded computer supports WPA2 security using the /bin/wpa_supplicant program.

Refer to the following table to determine the configuration options. The column labeled "Key required before

joining network?" describes whether an encryption and/or authentication key must be configured before

associating with a network.

Infrastructure
mode

Authentication
mode

Encryption
status

Manual Key
required?

IEEE 802.1X
enabled?

Key required
before joining
network?

ESS Open None No No No

ESS Open WEP Optional Optional Yes

ESS Shared None Yes No Yes

ESS Shared WEP Optional Optional Yes

ESS WPA WEP No Yes No

ESS WPA TKIP No Yes No

ESS WPA AES No Yes No

ESS WPA-PSK WEP Yes Yes No

ESS WPA-PSK TKIP Yes Yes No

ESS WPA-PSK AES Yes Yes No

IBSS Open None No No No

IBSS Open WEP Yes No Yes

IBSS Shared None Yes No Yes

IBSS Shared WEP Yes No Yes

IBSS WPA-None WEP Yes No Yes

IBSS WPA-None TKIP Yes No Yes

IBSS WPA-None AES Yes No Yes

See the following section for the shell script to use this function.

Connecto to an AP via WEP shared key authentication

Step 1: Edit /etc/Wireless/wpa_supplicant.conf.

W321/341 Linux Getting Started

 2-6

WEP #####
network={

ssid="MIS-WAP-1"
bssid=50:67:F0:61:2D:7A
key_mgmt=NONE
wep_key0=CFEE46EED3FA94FAEB92348922

}
###############

The following table describes each parameter:

Parameter Usage Function
ssid {Acess Point Name} Network name (as

announced by the
access point). An ASCII
or hex string enclosed in
quotation marks.

bssid {MAC address of the AP} Set network bssid,
(typically the MAC
address of the access
point).

key_mgmt {NONE,WEP,TKIP,AES} List of acceptable key
management protocols;

wep_key0 {wep key} WEP key in hexadecimal
format

Step 2: Type /etc/init.d/wireless.sh start to enable this function. To stop the function, type
 /etc/init.d/wireless.sh stop.

NOTE Click on the following links for more information about wpa_supplicant.conf.

http://www.daemon-systems.org/man/wpa_supplicant.conf.5.html
http://linux.die.net/man/5/wpa_supplicant.conf

NOTE If you need to get an IP address by DHCP, call the "dhcpcd wlan0" command after associating with
an AP.

Connecting to an AP via WPA/WPA2 PSK authentication

Follow these steps to connect an AP via WPA/WPAs PSK authentication.

Step 1: Edit the related parameter in the file /etc/Wireless/wpa_supplicant.conf.

WPA/WPA2 PSK #####
network={

ssid="5566"
proto=WPA WPA2 RSN
key_mgmt=WPA-PSK
pairwise=TKIP CCMP
group=TKIP CCMP
psk="01234567890"

}
#######################

Step 2: Type /etc/init.d/wireless.sh start to start (or re-start) the wireless interface. To stop the

wireless interface, type:
/etc/init.d/wireless.sh stop.

The following table describes each parameter:

Parameter Usage Function
ssid {Acess Point Name} Network name (as announced by the access point). An

ASCII or hex string enclosed in quotation marks.

proto {WPA WPA2 RSN} List of acceptable protocols; one or more of: WPA

http://www.daemon-systems.org/man/wpa_supplicant.conf.5.html
http://linux.die.net/man/5/wpa_supplicant.conf

W321/341 Linux Getting Started

 2-7

(IEEE802.11i/D3.0) and RSN (IEEE 802.11i). WPA2 is
another name for RSN. If you do not configure, the

default value is "WPA RSN".

key_mgmt {WPA-PSK or WPA-EAP} List of acceptable key management protocols; one or
more of: WPA-PSK (WPA pre-shared key), WPA-EAP
(WPA using EAP authentica-tion), IEEE8021X (IEEE
802.1x using EAP authentication and, optionally,
dynamically generated WEP keys). If you do not
configure, the default value is "WPA-PSK WPA-EAP".

pairwise {TKIP CCMP, or NONE} List of acceptable pairwise (unicast) ciphers for WPA;
one or more of: CCMP (AES in Counter mode with
CBC-MAC, RFC 3610, IEEE802.11i/D7.0), TKIP
(Temporal Key Integrity Protocol, IEEE802.11i/D7.0),
NONE (deprecated). If you do not configure, the default
value is "CCMP TKIP".

group {CCMP, TKIP, WEP104,

WEP40}
List of acceptable group (multicast) ciphers for WPA;
one or more of: CCMP (AES in Counter mode with
CBC-MAC, RFC 3610, IEEE802.11i/D7.0), TKIP
(Temporal Key Integrity Protocol, IEEE802.11i/D7.0),
WEP104 (WEP with 104-bit key), EP40 (WEP with 40-bit
key). If you do not configure, the default value is "CCMP
TKIP WEP104 WEP40".

psk {preshared key} WPA preshared key used in WPA-PSK mode. The key is
specified as 64 hex digits or as an 8-63 character ASCII
passphrase.

mode # 0 = infrastructure
(Managed) mode, i.e.,
associate with an AP

(default)
1 = IBSS (ad-hoc,

peer-to-peer)

IEEE 802.11 operation mode

Configuring STA for Ad-Hoc Mode Using WEP

Use the following commands to configure STA to create a link as adhoc mode with WEP encryption.

ap_scan=2
network={
 ssid="test adhoc"
 mode=1
 frequency=2412
 key_mgmt=NONE
 wep_key0="01234567890"
}

See the following descriptions for each parameter.

 Parameter Usage Function
ssid {Acess Point Name} Network name (as

announced by the access
point). An ASCII or hex
string enclosed in quotation
marks.

mode # 0 = infrastructure (Managed) mode, i.e., associate with an
AP (default)

1 = IBSS (ad-hoc, peer-to-peer)

IEEE 802.11 operation
mode

W321/341 Linux Getting Started

 2-8

frequency

Countries apply their own
regulations to both the
allowable channels,
allowed users and
maximum power levels
within these frequency
ranges. Consult your local
authorities as these
regulations may be out of
date as they are subject to
change at any time. Most of
the world will allow the first
thirteen channels in the
spectrum.

bssid {MAC address of the AP} Set network bssid,
(typically the MAC address
of the access point).

key_mgmt {NONE,WEP,TKIP,AES} List of acceptable key
management protocols;

wep_key0 {wep key} WEP key in hexadecimal
format

Step 2: Type /etc/init.d/wireless.sh start to start the wireless daemon. To stop the wireless
daemon, type /etc/init.d/wireless.sh stop.

Configuring STA for Ad-Hoc Mode Using WPA-none PSK Authentication

Use the following commands to configure STA to create a link as adhoc mode with WPANONE/CCMP
(authentication/encryption).

ap_scan=2
network={

ssid="test adhoc"
 mode=1
 frequency=2412
 proto=WPA
 key_mgmt=WPA-NONE
 pairwise=CCMP
 group=CCMP
 psk="01234567890"
}

Step 2: Type /etc/init.d/wireless.sh start to enable this function. To stop the function, type
/etc/init.d/wireless.sh stop.
See the following descriptions for each parameter.

Parameter Usage Function
ssid {Acess Point Name} Network name (as announced by

the access point). An ASCII or hex
string enclosed in quotation marks.

W321/341 Linux Getting Started

 2-9

frequency

Countries apply their own
regulations to both the allowable
channels, allowed users and
maximum power levels within these
frequency ranges. Consult your
local authorities as these
regulations may be out of date as
they are subject to change at any
time. Most of the world will allow the
first thirteen channels in the
spectrum.

proto {WPA} List of acceptable protocols: WPA

key_mgmt { WPA-NONE } List of acceptable key management
protocols: WPA-NONE

pairwise {CCMP} List of acceptable pairwise (unicast)
ciphers for WPA; one or more of:
CCMP (AES in Counter mode with
CBC-MAC, RFC 3610,
IEEE802.11i/D7.0), TKIP (Temporal
Key Integrity Protocol,
IEEE802.11i/D7.0), NONE
(deprecated). If you do not
configure, the default value is
"CCMP TKIP".

group {CCMP, TKIP, WEP104, WEP40} List of acceptable group (multicast)
ciphers for WPA; one or more of:
CCMP (AES in Counter mode with
CBC-MAC, RFC 3610,
IEEE802.11i/D7.0), TKIP (Temporal
Key Integrity Protocol,
IEEE802.11i/D7.0), WEP104 (WEP
with 104-bit key), EP40 (WEP with
40-bit key). If you do not configure,
the default value is "CCMP TKIP
WEP104 WEP40".

psk {preshared key} WPA preshared key used in
WPA-PSK mode. The key is
specified as 64 hex digits or as an
8-63 character ASCII passphrase.

mode # 0 = infrastructure (Managed) mode, i.e., associate
with an AP (default)
1 = IBSS (ad-hoc, peer-to-peer)

IEEE 802.11 operation mode

NOTE Click on the following links for more information about wpa_supplicant.conf.

http://www.daemon-systems.org/man/wpa_supplicant.conf.5.html
http://linux.die.net/man/5/wpa_supplicant.conf

http://www.daemon-systems.org/man/wpa_supplicant.conf.5.html
http://linux.die.net/man/5/wpa_supplicant.conf

W321/341 Linux Getting Started

 2-10

NOTE Most of time, you need to get the IP from AP by using “dhcpcd wlan0” command after connecting
to AP

Enabling wpa_cli to interact with wpa_supplicant

wpa_cli is a text-based frontend program for interacting with wpa_supplicant. It is used to query current

status, change configuration, trigger events, and request interactive user input.

NOTE wpa_supplicant must be executed before using wpa_cli command. Click on the following
links for more information on wpa_cli.
http://linux.die.net/man/8/wpa_cli

Scanning AP and checking results

Use the following command to scan local access points:

Use the following command to check the results:

Adding WEP setting into configuration file

Use the following commands to add WEP setting into /etc/Wireless/wpa_supplicant.conf.

root@Moxa:/home# wpa_cli -i wlan0 add_network
0
root@Moxa:/home# wpa_cli -i wlan0 set_network 0 key_mgmt NONE
OK
root@Moxa:/home# wpa_cli -i wlan0 set_network 0 ssid '"MOXA-AP-1"'
OK
root@Moxa:/home# wpa_cli -i wlan0 set_network 0 bssid 50:67:F0:61:2D:7A
OK
root@Moxa:/home# wpa_cli -i wlan0 set_network 0 wep_key0 AAEE431ED3FVV4FAEB923443C4
OK
root@Moxa:/home# wpa_cli -i wlan0 enable_network 0
OK
root@Moxa:/home# wpa_cli -iwlan0 select_network 0
OK
root@Moxa:/home# wpa_cli -i wlan0 save_config

Adding WPA/WPA2 Settings into the Configuration File

Use the following commands to add WPA/WPA2 setting into /etc/Wireless/wpa_supplicant.conf.

http://linux.die.net/man/8/wpa_cli

W321/341 Linux Getting Started

 2-11

root@Moxa:/home# wpa_cli -i wlan0 add_network
1
root@Moxa:/home# wpa_cli -i wlan0 set_network 1 ssid '"MOXA-AP"'
OK
root@Moxa:/home# wpa_cli -i wlan0 set_network 1 proto 'WPA WPA2 RSN'
OK
root@Moxa:/home# wpa_cli -i wlan0 set_network 1 key_mgmt 'WPA-PSK'
OK
root@Moxa:/home# wpa_cli -i wlan0 set_network 1 pairwise 'TKIP CCMP'
OK
root@Moxa:/home# wpa_cli -i wlan0 set_network 1 group 'TKIP CCMP'
OK
root@Moxa:/home# wpa_cli -i wlan0 set_network 1 psk '"01234567890"'
'SET_NETWORK 1 psk "01234567890"' command timed out.
root@Moxa:/home# wpa_cli -i wlan0 enable_network 1
OK
root@Moxa:/home# wpa_cli -iwlan0 select_network 1
OK
root@Moxa:/home# wpa_cli -i wlan0 save_config
OK

The following wpa_cli commands are available:
Command Function

wpa_cli -i wlan0 status get current WEP/WPA/EAPOL/EAP status

wpa_cli -i wlan0 help show this usage help

wpa_cli -i wlan0 terminate terminate wpa_supplicant

wpa_cli -i wlan0 interface show interfaces/select interface

wpa_cli -i wlan0 list_networks list configured networks in wpa_supplicant.conf

wpa_cli -i wlan0 select_network Set network variables. Network id can be received from
the LIST_NETWORKS command output. This command
uses the same variables and data formats as the
configuration file.

wpa_cli -i wlan0 enable_network Enable a network. Network id can be received from the
LIST_NETWORKS command output.

wpa_cli -i wlan0 disable_network Disable a network. Network id can be received from the
LIST_NETWORKS command output. Special network id all
can be used to disable all networks.

wpa_cli -i wlan0 remove_network Remove a network. Network id can be received from the

LIST_NETWORKS command output. Special network id all
can be used to remove all networks.

wpa_cli -i wlan0 reconfigure Force wpa_supplicant to re-read its configuration file

wpa_cli -i wlan0 save_config Save the current configuration. (Replace original
/etc/Wireless/wpa_supplicant.conf file)

wpa_cli -i wlan0 scan

wpa_cli -i wlan0 scan_results
Scan available networks
Get scanning results

SD Slot and USB for Storage Expansion
The W321/341 provides an SD slot for storage expansion. Moxa provides an SD flash disk for plug & play
expansion that allows users to plug in a Secure Digital (SD) memory card compliant with the SD 1.0 standard
for up to 1 GB of additional memory space, or a Secure Digital High Capacity (SDHC) memory card compliant
with the SD 2.0 standard for up to 16 GB of additional memory space. The following steps show you how to
install SD card into the W321/341.

W321

The SD slot is located on the right side of the W321 enclosure. To install an SD memory card, you must first
remove the SD slot’s protective cover to access the slot, and then plug the SD card directly into the slot.

W321/341 Linux Getting Started

 2-12

The SD memory card will be mounted at /mnt/sd. Detailed installation instructions are shown below:

Step 1: Use a screwdriver to remove the screws
holding the SD slot’s outer cover.

Step 2: After removing the cover, insert the SD
memory card as shown.

W341

The SD slot is located on the front panel of the W341. To install an SD memory card, you must first remove the
SD slot’s protective cover to access the slot, and then plug the SD memory card directly into the slot.

The SD memory card will be mounted at /mnt/sd. Detailed installation instructions are shown below:

Step 1: Use a screwdriver to remove the screws
holding the SD slot’s outer cover, and then remove the
cover.

Step 2: Insert the SD memory card as shown.

NOTE To remove the SD memory card from the slot, press the SD memory card in slightly with your finger, and then
remove your finger to cause the card to spring out partially. You may now grasp the top of the card with two
fingers and pull it out.

Before removing the SD memory card, remember to type /sync to ensure that your data has been written.

In addition to the SD socket, two USB 2.0 ports are located on the W341’s upper panel. The USB host is also
designed for storage expansion. To use a USB flash disk to expand the storage space, plug the USB flash disk
into the USB port. The flash disk will be detected automatically, and its file partition will be mounted into the OS.
For the W341, the USB storage will be mounted in one of the following directories: /mnt/usbstorage1,
/mnt/usbstorage2.

W321/341 Linux Getting Started

 2-13

Test Program—Developing Hello.c
In this section, we use the standard “Hello” programming example to illustrate how to develop a program for
the W321/341. In general, program development involves the following seven steps.

Step 1:
Connect the W321/341 to a Linux PC.

Step 2:
Install Tool Chain (GNU Cross Compiler & glibc).

Step 3:
Set the cross compiler and glibc environment variables.

Step 4:
Code and compile the program.

Step 5:
Download the program to the W321/341 using FTP or NFS.

Step 6:
Debug the program
 If bugs are found, return to Step 4.
 If no bugs are found, continue with Step 7.

Step 7:
Back up the user directory (distribute the program to
additional W321/341 units if needed).

Installing the Tool Chain (Linux)
The Linux Operating System must be pre-installed in the PC before installing the W321/341 GNU Tool Chain.
Fedora core or compatible versions are recommended. The Tool Chain requires approximately 100 MB of hard
disk space on your PC. The W321/341 Tool Chain software is located on the W321/341 CD. To install the Tool
Chain, insert the CD into your PC and then issue the following commands:

#mount/dev/cdrom /mnt/cdrom
/mnt/cdrom/tool-chain/arm-linux_3.1_Build_11111411.sh

The Tool Chain will be installed automatically on your Linux PC within a few minutes. Before compiling the
program, be sure to set the following path first, since the Tool Chain files, including the compiler, link, library,
and include files are located in this directory.

PATH=/usr/local/arm-linux-4.4.2/bin:$PATH

Setting the path allows you to run the compiler from any directory.

Checking the Flash Memory Space
If the flash memory is full, you will not be able to save data to the Flash ROM. Use the following command to
calculate the amount of “Available” flash memory:

/>df –h

W321/341 Linux Getting Started

 2-14

If there isn’t enough “Available” space for your application, you will need to delete some existing files. To do
this, connect your PC to the W321/341 with the console cable, and then use the console utility to delete the files
from the W321/341’s flash memory. To check the amount of free space available, look at the directories in the
read/write directory /dev/mtdblock3. Note that the directories /home and /etc are both mounted on the
directory /dev/mtdblock3.

NOTE If the flash memory is full, you will need to free up some memory space before saving files to the Flash ROM.

Compiling Hello.c
The package CD contains several example programs. Here we use Hello.c as an example to show you how to
compile and run your applications. Type the following commands from your PC to copy the files used for this
example from the CD to your computer’s hard drive:

cd /tmp/
mkdir example
cp –r /mnt/cdrom/example/W321/* /tmp/example

To compile the program, go to the Hello subdirectory and issue the following commands:

#cd example/W321/hello #make

You should receive the following response:

[root@localhost hello]# make
/usr/local/arm-linux/bin/arm-linux-gcc –o hello-release hello.c
/usr/local/arm-linux/bin/arm-linux-strip –s hello-release
/usr/local/arm-linux/bin/arm-linux-gcc –ggdb -o hello-debug hello.c
[root@localhost hello]# _

Next, execute make to generate hello-release and hello-debug, which are described below:

hello-release—an ARM platform execution file (created specifically to run on the W321/341)

hello-debug—an ARM platform GDB debug server execution file (see Chapter 5 for details about the GDB
debug tool).

NOTE Since Moxa’s tool chain places a specially designed Makefile in the directory /tmp/example/W321/hello,
be sure to type the #make command from within that directory. This special Makefile uses the mxscale-gcc
compiler to compile the hello.c source code for the Xscale environment. If you type the #make command from
within any other directory, Linux will use the x86 compiler (for example, cc or gcc).

Refer to Chapter 5 to see a Makefile example.

Uploading and Running the “Hello” Program
Use the following commands to upload hello-release to the W321/341 by FTP.

1. From the PC, type:

#ftp 192.168.3.127

2. Use the bin command to set the transfer mode to Binary mode, and then use the put command to initiate
the file transfer:

ftp> bin
ftp> cd /home
ftp> put hello-release

3. From the W321/341, type:

chmod +x hello-release
./hello-release

W321/341 Linux Getting Started

 2-15

The word Hello will be printed on the screen.

root@Moxa:~# ./hello-release
Hello

Developing Your First Application
We use the tcps2 example to illustrate how to build an application. The procedure outlined in the following
subsections will show you how to build a TCP server program plus serial port communication that runs on the
W321/341.

Testing Environment
The tcps2 example demonstrates a simple application program that delivers transparent, bi-directional data
transmission between the W321/341’s serial and Ethernet ports. As illustrated in the following figure, the
purpose of this application is to transfer data between PC 1 and the W321/341 through an RS-232 connection.
At the remote site, data can be transferred between the W321/341’s Ethernet port and PC 2 over an Ethernet
connection.

Compiling tcps2.c
The source code for the tcps2 example is located on the CD-ROM
at CD-ROM://example/W321/TCPServer2/tcps2.c. Use the following commands to copy the file to a
specific directory on your PC. We use the direrctory /home/work/temp/. Note that you need to copy 3
files—Makefile, tcps2.c, tcpsp.c—from the CD-ROM to the target directory.

#mount –t iso9660 /dev/cdrom /mnt/cdrom

#cp /mnt/cdrom/example/W321/TCPServer2/tcps2.c /home/w341/1st_application/tcps2.c
#cp /mnt/cdrom/example/W321/TCPServer2/tcpsp.c /home/w341/1st_application/tcpsp.c
#cp /mnt/cdrom/example/W321/TCPServer2/Makefile.c /home/w341/1st_application/Makefile

Type #make to compile the example code:

You will get the following response, indicating that the example program was compiled successfully.

W321/341 Linux Getting Started

 2-16

Two executable files, tcps2-release and tcps2-debug, are created.

tcps2-release—an ARM platform execution file (created specifically to run on the W321/341).

tcps2-debug—an ARM platform GDB debug server execution file (see Chapter 5 for details about the GDB
debug tool).

NOTE If you get an error message at this point, it could be because you neglected to put tcps2.c and tcpsp.c in the
same directory. The example Makefile we provide is set up to compile both tcps2 and tcpsp into the same
project Makefile. Alternatively, you could modify the Makefile to suit your particular requirements.

Uploading and Running the “tcps2-release” Program
Use the following commands to upload tcps2-release to the W321/341 through an FTP connection.

1. From the PC, type:

#ftp 192.168.3.127

2. Next, use the bin command to set the transfer mode to Binary, and the put command to initiate the file
transfer:

ftp> bin
ftp> cd /home
ftp> put tcps2-release

 root@server11:/home/w341/1st_application
 [root@server11 1st_application]# ftp 192.168.3.127
Connected to 192.168.3.127 220
Moxa FTP server (Version wu-2.6.1(2) Mon Nov 24 12:17:04 CST 2003) ready.
530 Please login with USER and PASS.
530 Please login with USER and PASS.
KERBEROS_V4 rejected as an authentication type
Name (192.168.3.127:root): root
331 Password required for root.
Password:
230 User root logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> bin
200 Type set to I.
ftp> put tcps2-release
local: tcps2-release remote: tcps2-release
277 Entering Passive Mode (192.168.3.127.82.253)
150 Opening BINARY mode data connection for tcps2-release.
226 Transfer complete
4996 bytes sent in 0.00013 seconds (3.9e+04 Kbytes/s)
ftp> ls
227 Entering Passive Mode (192.168.3.127.106.196)
150 Opening ASCII mode data connection for /bin/ls.
-rw------- 1 root root 899 Jun 10 08:11 bash_history
-rw-r--r-- 1 root root 4996 Jun 12 02:15 tcps2-release
226 Transfer complete
ftp>

3. From the W321/341, type:

chmod +x tcps2-release
./tcps2-release &

 192.168.3.127 - PuTTY
 root@Moxa:~# ls –al
drwxr—xr-x 2 root root 0 Jun 12 02:14
drwxr—xr-x 15 root root 0 Jan 1 1970
-rw------- 1 root root 899 Jun 10 08:11 .bash_history
-rw-r--r-- 1 root root 4996 Jun 12 02:15 tcps2-release
root@Moxa:~# chmod +x tcps2-release

W321/341 Linux Getting Started

 2-17

root@Moxa:~# ls –al
drwxr—xr-x 2 root root 0 Jun 12 02:14
drwxr—xr-x 15 root root 0 Jan 1 1970
-rw------- 1 root root 899 Jun 10 08:11 .bash_history
-rwxr-xr-x 1 root root 4996 Jun 12 02:15 tcps2-release
root@Moxa:~# ./tcps2-release &
[1] 187
Start

4. The program should start running in the background. Use the #ps command to check if the tcps2 program

is actually running in the background.
 192.168.3.127 - PuTTY
 [1]+ Running ./tcps2-release &
root@Moxa:~# ps
PID Uid VmSize Stat Command
 1 root 532 S init [3]
 2 root SWN [ksoftirqd/0]
 3 root SW< [events/0]
 4 root SW< [khelper]
 13 root SW< [kblockd/0]
 14 root SW [khubd]
 24 root SW [pdflush]
 25 root SW [pdflush]
 27 root SW< [aio/0]
 26 root SW [kswapd0]
604 root SW [mtdblockd]
609 root SW [pccardd]
611 root SW [pccardd]
625 root SWN [jffs2_gcd_mtd3]
673 root 500 S /bin/inetd
682 bin 380 S /bin/portmap
685 root 1176 S /bin/sh –login
690 root 464 S /bin/snmpd
714 root 1176 S -bash
727 root 1164 S -bash
728 root 1264 S ./tcps2-release
729 root 1592 S ps
root@Moxa:~#

NOTE Use the kill -9 command for PID 728 to terminate this program: #kill -9 %728

Testing Procedure Summary
1. Compile tcps2.c (#make).

2. Upload and run tcps2-release in the background (#./tcps2-release &).

3. Check that the process is running (#ps).

4. Use a serial cable to connect PC1 to the W321/341’s serial port 1.

5. Use an Ethernet cable to connect PC2 to the W321/341.

6. On PC1: If running Windows, use HyperTerminal (115200, n, 8, 1) to open COMn.

7. On PC2: Type #telnet 192.168.3.127 4001.

8. On PC1: Type some text on the keyboard and then press Enter.

9. On PC2: The text you typed on PC1 will appear on PC2’s screen.

The testing environment is illustrated in the following figure. However, note that there are limitations to the
example program tcps2.c.

W321/341 Linux Getting Started

 2-18

NOTE The tcps2.c application is a simple example designed to give users a basic understanding of the concepts
involved in combining Ethernet communication and serial port communication. However, the example program
has some limitations that make it unsuitable for real-life applications.
1. The serial port is in canonical mode and block mode, making it impossible to send data from the Ethernet

side to the serial side (i.e., from PC 2 to PC 1 in the above example).

2. The Ethernet side will not accept multiple connections.

3
3. Managing Embedded Linux

This chapter includes information about version control, deployment, updates, and peripherals. The

information in this chapter will be particularly useful when you need to run the same application on

several W321/341 units.

The following topics are covered in this chapter:

 System Version Information
 System Image Backup
 Upgrading the Firmware
 Loading Factory Defaults

 Enabling and Disabling Daemons
 Setting the Run-Level
 Adjusting the System Time
 Setting the Time Manually
 NTP Client
 Updating the Time Automatically

 Cron—Daemon to Execute Scheduled Commands
 Connecting Storage Peripherals

W321/341 Linux Managing Embedded Linux

 3-2

System Version Information
To determine the hardware capability of your W321/341, and what kind of software functions are

supported, check the version numbers of your W321/341’s hardware, kernel, and user file system.

Contact Moxa to determine the hardware version. You will need the Production S/N (Serial number),

which is located on the W321/341’s bottom label.

To check the kernel version, type:

#kversion

 192.168.3.127 - PuTTY
 root@Moxa:~# kversion
W321-LX ersion 3.0.0
root@Moxa:~# kversion –a
W321-LX version 3.0 Build 13031118

NOTE The kernel version number is for the factory default configuration. You may download the latest firmware

version from Moxa’s website and then upgrade the W321/341’s hardware.

System Image Backup
Upgrading the Firmware

The W321/341’s bios, kernel, and root file system are combined into one firmware file, which can be

downloaded from Moxa’s website www.moxa.com). The name of the file has the form w321-x.x.x.frm

or w341-x.x.x.frm, with “x.x.x” indicating the firmware version. To upgrade the firmware, download

the firmware file to a PC, and then transfer the file to the W321/341 using a console port or Telnet

console connection.

ATTENTION
Upgrading the firmware will erase all data on the Flash ROM

If you are using the ramdisk to store code for your applications, beware that updating the firmware will erase

all of the data on the Flash ROM. You should back up your application files and data before updating the

firmware.

Since different Flash disks have different sizes, it is a good idea to check the size of your Flash disk

before upgrading the firmware, or before using the disk to store your application and data files. Use the

#df –h command to list the size of each memory block and how much free space is available in each

block (see next page for commands)

W321/341 Linux Managing Embedded Linux

 3-3

 192.168.3.127 - PuTTY
 root@Moxa:~# df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/root 8192 7664 528 94% /
none 4096 8 4088 0% /dev
/dev/ram0 499 17 457 4% /var
/dev/mtdblock3 6144 588 5556 10% /tmp
/dev/mtdblock3 6144 588 5556 10% /home
/dev/mtdblock3 6144 588 5556 10% /etc
/dev/mmcblk0p1 479836 26993 428069 6% /var/mmc
tmpfs 16384 0 16384 0% /dev/shm
root@Moxa:~# upramdisk
root@Moxa:~# df -h
Filesystem Size Used Available Use% Mounted on
/dev/root 8.0M 7.5M 528.0K 94% /
none 4.0M 8.0K 4.0M 0% /dev
/dev/ram0 499.0K 18.0K 456.0K 4% /var
/dev/mtdblock3 6.0M 588.0K 5.4M 10% /tmp
/dev/mtdblock3 6.0M 588.0K 5.4M 10% /home
/dev/mtdblock3 6.0M 588.0K 5.4M 10% /etc
/dev/mmcblk0p1 468.6M 26.4M 418.0M 6% /var/mmc
tmpfs 16.0M 0 16.0M 0% /dev/shm
/dev/ram1 16.0M 132.0K 15.0M 1% /var/ramdisk
root@Moxa:~# cd /mnt/ramdisk
root@Moxa:/mnt/ramdisk#
The following instructions give the steps required to save the firmware file to the W321/341’s RAM disk

and how to upgrade the firmware.

1. Type the following commands to enable the RAM disk:

#upramdisk

#cd /mnt/ramdisk

2. Type the following commands to use the W321/341’s built-in FTP client to transfer the firmware file

(FWR_W321_Va.b.c_Build_YYMMDDHH.hfm or

FWR_W341_Va.b.c_Build_YYMMDDHH.hfm) from the PC to the W321/341:

/dev/shm> ftp <destination PC’s IP>

Login Name: xxxx

Login Password: xxxx

ftp> bin

ftp> get FWR_W321_Va.b.c_Build_YYMMDDHH.hfm

 192.168.4.127 – PuTTY

root@Moxa:/dev/shm# ftp 192.168.3.193
Connected to 192.168.3.193 (192.168.3.193).
220 TYPSoft FTP Server 1.10 ready…
Name (192.168.3.193:root): root
331 Password required for root.
Password:
230 User root logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd newsw
250 CWD command successful. “/C:/ftproot/newsw/” is current directory.
ftp> bin

W321/341 Linux Managing Embedded Linux

 3-4

200 Type set to I.
ftp> ls
200 Port command successful.
150 Opening data connection for directory list.
drw-rw-rw- 1 ftp ftp 0 Nov 30 10:03 .
drw-rw-rw- 1 ftp ftp 0 Nov 30 10:03 .
-rw-rw-rw- 1 ftp ftp 12904012 Nov 29 10:24

FWR_W321_Va.b.c_Build_YYMMDDHH.hfm
226 Transfer complete.
ftp> get FWR_W321_Va.b.c_Build_YYMMDDHH.hfm
local: FWR_W321_Va.b.c_Build_YYMMDDHH.hfm remote:

FWR_W321_Va.b.c_Build_YYMMDDHH.hfm
200 Port command successful.
150 Opening data connection for FWR_W321_Va.b.c_Build_YYMMDDHH.hfm
226 Transfer complete.
12904012 bytes received in 2.17 secs (5925.8 kB/s)
ftp>

3. Next, use the upgradehfm command to upgrade the kernel and root file system.

#upgradehfm FWR_W321_Va.b.c_Build_YYMMDDHH.hfm

 192.168.4.127 – PuTTY

root@Moxa:/dev/shm# upgradehfm FWR_W321_Va.b.c_Build_YYMMDDHH.hfm
DA-66X Upgrade firmware utility version 1.0.
To check source firmware file context.
The source firmware file conext is OK.
This step will upgrade firmware. All the data on flash will be destroyed.
Do you want to continue? (Y/N) :
Now upgrade the file [redboot].
Format MTD device [/dev/mtd0] ...
MTD device [/dev/mtd0] erase 128 Kibyte @ 60000 -- 100% complete.
Wait to write file ...
Completed 100%
Now upgrade the file [kernel].
Format MTD device [/dev/mtd1] ...
MTD device [/dev/mtd1] erase 128 Kibyte @ 1a0000 -- 100% complete.
Wait to write file ...
Completed 100%
Now upgrade the file [root-file-system].
Format MTD device [/dev/mtd2] ...
MTD device [/dev/mtd2] erase 128 Kibyte @ e00000 -- 100% complete.
Wait to write file ...
Completed 100%
Now upgrade the file [directory].
Format MTD device [/dev/mtd5] ...
MTD device [/dev/mtd5] erase 128 Kibyte @ 20000 -- 100% complete.
Wait to write file ...
Completed 100%
Now upgrade the new configuration file.
Upgrade the firmware is OK. Rebooting

ATTENTION
The upfirm utility will reboot your target after the upgrade is OK.

W321/341 Linux Managing Embedded Linux

 3-5

Loading Factory Defaults
You can press the reset-to-default button over 5 seconds. The system will load the factory setting. And

will destroy all on /home & /etc & /usr/local/bin & /usr/local/sbin & /usr/local/lib & /usr/local/libexec &

/tmp directory files. The first 5 seconds the ready-light will be toggled for each one second. If you

continue to press over 5 second, the read-light will be off and load the factory defaults.

Enabling and Disabling Daemons
The following daemons are enabled when the W321/341 unit boots up for the first time.

snmpd …………. SNMP Agent daemon

inetd ……………. Internet Daemons

ftpd ………………. FTP Server / Client daemon

sshd ……………… Secure Shell Server daemon

Type the command ps to list all processes currently running.

 192.168.3.127 - PuTTY

 PID USER VSZ STAT COMMAND
 1 root 1872 S init [3]
 2 root 0 SW [kthreadd]
 3 root 0 SW [ksoftirqd/0]
 4 root 0 SW [kworker/0:0]
 5 root 0 SW [kworker/u:0]
 6 root 0 SW [rcu_kthread]
 7 root 0 SW< [khelper]
 8 root 0 SW [sync_supers]
 9 root 0 SW [bdi-default]
 10 root 0 SW< [kblockd]
 11 root 0 SW [khubd]
 12 root 0 SW< [rpciod]
 13 root 0 SW [kswapd0]
 14 root 0 SW [kworker/0:1]
 15 root 0 SW [fsnotify_mark]
 16 root 0 SW< [aio]
 17 root 0 SW< [nfsiod]
 18 root 0 SW< [crypto]
 25 root 0 SW [mtdblock0]
 26 root 0 SW [mtdblock1]
 27 root 0 SW [mtdblock2]
 28 root 0 SW [mtdblock3]
 29 root 0 SW< [wusbd]
 30 root 0 SW [kworker/u:1]
 31 root 0 SW [mmcqd/0]
 58 root 0 SWN [jffs2_gcd_mtd3]
 71 root 0 SW [kjournald]
 92 root 0 SW [RtmpTimerTask]
 93 root 0 SW [RtmpMlmeTask]
 94 root 0 SW [RtmpCmdQTask]
 102 root 1940 S /bin/inetd
 106 bin 1856 S /bin/portmap
 111 root 2932 S /bin/sh --login
 116 root 1924 S /bin/snmpd

W321/341 Linux Managing Embedded Linux

 3-6

 122 root 4316 S /bin/sshd -6 -f /etc/ssh/sshd_config
 132 root 4316 S /bin/sshd -4 -f /etc/ssh/sshd_config
 161 root 6928 S sshd: root@pts/0
 163 root 2864 S -bash
 214 root 0 SW [flush-1:0]
 215 root 0 SW [flush-1:1]
 217 root 3096 R ps

To run a private daemon, you can edit the file rc.local, as follows:

#cd /etc/rc.d
#vi rc.local

 192.168.3.127 - PuTTY
 root@Moxa:~# cd /etc/rc.d
root@Moxa:~# /etc/rc.d# vi rc.local

Next, use vi to open your application program. We use the example program tcps2-release, and put it
to run in the background.

 192.168.3.127 - PuTTY
 # !/bin/sh
Add you want to run daemon
/home/tcps2-release &~

The enabled daemons will be available after you reboot the system.

 192.168.3.127 - PuTTY

 PID USER VSZ STAT COMMAND
 1 root 1872 S init [3]
 2 root 0 SW [kthreadd]
 3 root 0 SW [ksoftirqd/0]
 4 root 0 SW [kworker/0:0]
 5 root 0 SW [kworker/u:0]
 6 root 0 SW [rcu_kthread]
 7 root 0 SW< [khelper]
 8 root 0 SW [sync_supers]
 9 root 0 SW [bdi-default]
 10 root 0 SW< [kblockd]
 11 root 0 SW [khubd]
 12 root 0 SW< [rpciod]
 13 root 0 SW [kswapd0]
 14 root 0 SW [kworker/0:1]
 15 root 0 SW [fsnotify_mark]
 16 root 0 SW< [aio]
 17 root 0 SW< [nfsiod]
 18 root 0 SW< [crypto]
 25 root 0 SW [mtdblock0]
 26 root 0 SW [mtdblock1]
 27 root 0 SW [mtdblock2]
 28 root 0 SW [mtdblock3]
 29 root 0 SW< [wusbd]
 30 root 0 SW [kworker/u:1]
 31 root 0 SW [mmcqd/0]
 58 root 0 SWN [jffs2_gcd_mtd3]
 71 root 0 SW [kjournald]
 92 root 0 SW [RtmpTimerTask]
 93 root 0 SW [RtmpMlmeTask]
 94 root 0 SW [RtmpCmdQTask]
 102 root 1940 S /bin/inetd
 106 bin 1856 S /bin/portmap
 111 root 2932 S /bin/sh --login

W321/341 Linux Managing Embedded Linux

 3-7

 116 root 1924 S /bin/snmpd
 122 root 4316 S /bin/sshd -6 -f /etc/ssh/sshd_config
 132 root 4316 S /bin/sshd -4 -f /etc/ssh/sshd_config
 161 root 6928 S sshd: root@pts/0
 163 root 2864 S -bash
 214 root 0 SW [flush-1:0]
 215 root 0 SW [flush-1:1]
221 root 1852 S ./tcps2-release

 222 root 3096 R ps

root@Moxa:~#

Setting the Run-Level
In this section, we outline the steps you should take to set the Linux run-level and execute requests. Use

the following command to enable or disable settings:

 192.168.4.127 – PuTTY

root@Moxa:/ect/rc.d/rc3.d# ls
S20snmpd S55ssh S99rmnologin S99showreadyled
root@Moxa:/etc/rc.d/rc3.d#

#cd /etc/rc.d/init.d

Edit a shell script to execute /home/tcps2-release and save to tcps2 as an example.

#cd /etc/rc.d/rc3.d

#ln –s /etc/rc.d/init.d/tcps2 S60tcps2

SxxRUNFILE stands for

S: start the run file while linux boots up.

xx: a number between 00-99. Smaller numbers have a higher priority.

RUNFILE: the file name.

 192.168.4.127 – PuTTY

root@Moxa:/ect/rc.d/rc3.d# ls
S20snmpd S55ssh S99rmnologin S99showreadyled
root@Moxa:/ect/rc.d/rc3.d# ln –s /root/tcps2-release S60tcps2
root@Moxa:/ect/rc.d/rc3.d# ls
root@Moxa:/ect/rc.d/rc3.d# ls
S20snmpd S55ssh S99rmnologin S99showreadyled
S60tcps2
root@Moxa:/etc/rc.d/rc3.d#

KxxRUNFILE stands for

K: start the run file while linux shuts down or halts.

xx: a number between 00-99. Smaller numbers have a higher priority.

RUNFILE: the file name.

To remove the daemon, remove the run file from the /etc/rc.d/rc3.d directory by using the following

command:

W321/341 Linux Managing Embedded Linux

 3-8

#rm –f /etc/rc.d/rc3.d/S60tcps2

Adjusting the System Time
Setting the Time Manually

The W321/341 have two time settings. One is the system time, and the other is the RTC (Real Time

Clock) time kept by the W321/341’s hardware. Use the #date command to query the current system

time or set a new system time. Use #hwclock to query the current RTC time or set a new RTC time.

Use the following command to query the system time:

#date

Use the following command to query the RTC time:

#hwclock

Use the following command to set the system time:

#date MMDDhhmmYYYY

MM = Month

DD = Date

hhmm = hour and minute

YYYY = Year

Use the following command to set the RTC time:

#hwclock –w

Write current system time to RTC

The following figure illustrates how to update thesystem time and set the RTC time.

 192.168.3.127 - PuTTY
 root@Moxa:~# date
Fri Jun 23 23:30:31 CST 2000
root@Moxa:~# hwclock
Fri Jun 23 23:30:35 2000 -0.557748 seconds
root@Moxa:~# date 120910002004
Thu Dec 9 10:00:00 CST 2004
root@Moxa:~# hwclock –w
root@Moxa:~# date ; hwclock
Thu Dec 9 10:01:07 CST 2004
Thu Dec 9 10:01:08 2004 -0.933547 seconds
root@Moxa:~#

NTP Client
The W321/341 have a built-in NTP (Network Time Protocol) client that is used to initialize a time request

to a remote NTP server. Use #ntpdate <this client utility> to update the system time.

#ntpdate 192.168.1.97

#hwclock –w

W321/341 Linux Managing Embedded Linux

 3-9

Visit http://www.ntp.org for more information about NTP and NTP server addresses.

 10.120.53.100 – PuTTY

root@Moxa:/etc/rc.d/rc3.d# ntpdate 192.168.1.97
Looking for host 192.168.1.97 and service ntp
host found : 192.168.1.97
18 Mar 19:30:36 ntpdate[192]: step time server 192.168.1.97 offset

211195575.886041 sec
root@Moxa:/etc/rc.d/rc3.d# hwclock -w
root@Moxa:/etc/rc.d/rc3.d# hwclock
Mon Mar 18 19:30:46 2013 0.000000 seconds

NOTE Before using the NTP client utility, check your IP and DNS settings to make sure that an Internet connection is

available. Refer to Chapter 2 for instructions on how to configure the Ethernet interface, and see Chapter 4 for

DNS setting information.

Updating the Time Automatically
In this subsection, we show how to use a shell script to update the time automatically.

Example shell script to update the system time periodically

#!/bin/sh
ntpdate time.nist.gov
You can use the time server’s ip address or domain
name directly. If you use domain name, you must
enable the domain client on the system by updating
/etc/resolv.conf file.
hwclock –-systohc
sleep 100
Updates every 100 seconds. The min. time is 100 seconds. Change
100 to a larger number to update RTC less often.

Save the shell script using any file name. E.g., fixtime

How to run the shell script automatically when the kernel boots up

Copy the example shell script fixtime to directory /etc/init.d, and then use chmod 755 fixtime to change
the shell script mode. Next, use vi editor to edit the file /etc/inittab. Add the following line to the bottom
of the file:

ntp : 2345 : respawn : /etc/init.d/fixtime

Use the command #init q to re-init the kernel.

W321/341 Linux Managing Embedded Linux

 3-10

Cron—Daemon to Execute Scheduled
Commands

Start Cron from the directory /etc/rc.d/rc. local. It will return immediately, so you don’t need to start it
with ‘&’ to run in the background.

The Cron daemon will search /etc/cron.d/crontab for crontab files, which are named after accounts in
/etc/passwd.

Cron wakes up every minute, and checks each command to see if it should be run in that minute. Modify
the file /etc/cron.d/crontab to set up your scheduled applications. Crontab files have the following
format:

mm h dom mon dow user command
min hour date month week user command
0-59 0-23 1-31 1-12 0-6 (0 is Sunday)

The following example demonstrates how to use Cron.

How to use cron to update the system time and RTC time every day at 8:00.

STEP1: Write a shell script named fixtime.sh and save it to /home/.

#!/bin/sh
ntpdate time.nist.gov
hwclock –-systohc
exit 0

STEP2: Change mode of fixtime.sh

#chmod 755 fixtime.sh

STEP3: Modify /etc/cron.d/crontab file to run fixtime.sh at 8:00 every day.

Add the following line to the end of crontab:
* 8 * * * root/homefixtime.sh

STEP4: Enable the cron daemon manually.

#/etc/init.d/cron start

STEP5: Enable cron when the system boots up.

Add the following line in the file /etc/init.d/rc.local
#/etc/init.d/cron start

W321/341 Linux Managing Embedded Linux

 3-11

Connecting Storage Peripherals
The W321/341 supports PNP (plug-n-play), and hot pluggability for connecting USB mass storage

devices. W321/341 has an mdev auto mount utility that eases the mount procedure. The mdev auto

mount utility default only supports mount one partition automatically. For using SD memory card

storage, you should create one partition on a host computer. Here we create one partition on the Linux

host computer by the fdisk utility.

192.168.3.120 – Putty

root@Moxa:/# fdisk /dev/mmcblk0

The number of cylinders for this disk is set to 15632.
There is nothing wrong with that, but this is larger than 1024,
and could in certain setups cause problems with:
1) software that runs at boot time (e.g., old versions of LILO)
2) booting and partitioning software from other OSs
 (e.g., DOS FDISK, OS/2 FDISK)

Command (m for help): p

Disk /dev/mmcblk0: 512 MB, 512229376 bytes
4 heads, 16 sectors/track, 15632 cylinders
Units = cylinders of 64 * 512 = 32768 bytes

 Device Boot Start End Blocks Id System

Command (m for help): n
Command action
 e extended
 p primary partition (1-4)
p
Partition number (1-4): 1
First cylinder (1-15632, default 1):
Using default value 1
Last cylinder or +size or +sizeM or +sizeK (1-15632, default 15632):
Using default value 15632

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table
root@Moxa:/#

Next, you can format the partition.

192.168.3.120 – Putty

root@Moxa:/# mke2fs -t ext3 /dev/mmcblk0p1

After that you can remove the external storage and connected it to W321/341. The first connected SD

card storage device will be mounted automatically by mount to /mnt/sd. W321/341 will be

un-mounted automatically with umount when the device is disconnected.

W321/341 Linux Managing Embedded Linux

 3-12

ATTENTION

Remember to type the #sync command before you disconnect the USB mass storage device. If

you don’t issue the command, you may lose some data.

Remember to exit the /mnt/sd directory when you disconnect the SD memory card storage

device. If you stay in /mnt/sd, the auto un-mount process will fail. If that happens, type

#umount /mnt/sd to un-mount the SD card device manually.

ATTENTION
W321/341 only supports certain types of flash disk SD memory card storage device. Some the U

SD card storage may not be compatible with W321/341. Check compatibility issues before you

purchase a SD card storage device to connect to W321/341. /etc/mdev.conf is the mdev

configuration file.

mmcblk0p[1-9] 0:0 0660 *(/sbin/automount_sd.sh $MDEV)

It automatically run /sbin/automount_sd.sh to mount the external storage.

#!/bin/sh

DISKNAME=`echo $1|cut -c1-3`

MPATH=/var/$DISKNAME

MPATHLOG=/dev/shm/$1

echo $1 > /dev/shm/mountpath.log

if ["$1" == ""]; then

 echo .automount.sh parameter is none.

 exit 1

fi

if [-e "$MPATH"]; then

 echo "$MPATH" > /dev/shm/umount.log

 umount $MPATH

 rm -rf $MPATH

else

 echo $MPATH > /dev/shm/mount.log

 if [-b /dev/$1]; then

 mkdir -p $MPATH

 mount /dev/$1 $MPATH

W321/341 Linux Managing Embedded Linux

 3-13

 fi

fi

exit 0

If you need to customize the mounting script, you should change root file system partition to

writable mode for editing /sbin/automount.sh script.

root@Moxa:/# mount -o remount,rw /

root@Moxa:/# vi /sbin/automount_sd.sh

root@Moxa:/# umount /

4
4. Managing Communications

In this chapter, we explain how to configure the W321/341’s various communication functions.

The following topics are covered in this chapter:

 FTP

 DNS

 IPTABLES

 NAT

 NAT Example

 Enabling NAT at Bootup

 Dial-up Service—PPP

 PPPoE

 NFS (Network File System)

 Setting up the W321/341 as an NFS Client

 SNMP

 OpenVPN

W321/341 Linux

 -2

FTP
In addition to supporting Telnet client/server and FTP client/server, the W321/341 also support SSH and sftp
client/server. To enable or disable the Telnet/ftp server, you first need to edit the file /etc/inetd.conf.

Enabling the ftp server

The following example shows the default content of the file /etc/inetd.conf. The default is to enable the
Telnet/ftp server:

discard dgram udp wait root /bin/discard
discard stream tcp nowait root /bin/discard
#telnet stream tcp nowait root /bin/telnetd
ftp stream tcp nowait root /bin/ftpd -l

Disabling the Telnet/ftp server

Disable the daemon by typing ‘#’ in front of the first character of the row to comment out the line.

SFTP
File Transfer Protocol (FTP) was once the most widely used protocol for transferring files between computers.
However, because FTP sends authentication information and file contents over the wire unencrypted, it's not a
secure way to communicate. SSH File Transfer Protocol (SFTP) addresses this security concern by providing
data transfer over a fully encrypted channel. You can use these alternatives for transferring files securely over
the Internet or any other untrusted network.

DNS
The W321/341 support DNS client (but not DNS server). To set up DNS client, you need to edit three
configuration files: /etc/hosts, /etc/resolv.conf, and /etc/nsswitch.conf.

/etc/hosts

This is the first file that the Linux system reads to resolve the host name and IP address.

/etc/resolv.conf

This is the most important file that you need to edit when using DNS for the other programs. For example,
before you use #ntpdate time.nist.goc to update the system time, you will need to add the DNS server address
to the file. Ask your network administrator which DNS server address you should use. The DNS server’s IP
address is specified with the “nameserver” command. For example, add the following line to /etc/resolv.conf if
the DNS server’s IP address is 168.95.1.1:

nameserver 168.95.1.1

 10.120.53.100 - PuTTY
 root@Moxa:/etc# cat resolv.conf

resolv.conf This file is the resolver configuration file
See resolver(5).

#nameserver 192.168.1.16
nameserver 168.95.1.1
nameserver 140.115.1.31
nameserver 140.115.236.10

W321/341 Linux

 -3

/etc/nsswitch.conf

This file defines the sequence to resolve the IP address by using /etc/hosts file or /etc/resolv.conf.

IPTABLES
IPTABLES is an administrative tool for setting up, maintaining, and inspecting the Linux kernel’s IP packet filter
rule tables. Several different tables are defined, with each table containing built-in chains and user-defined
chains.

Each chain is a list of rules that apply to a certain type of packet. Each rule specifies what to do with a matching
packet. A rule (such as a jump to a user-defined chain in the same table) is called a “target.”

The W321/341 support 3 types of IPTABLES table: Filter tables, NAT tables, and Mangle tables:

A. Filter Table—includes three chains:

INPUT chain
OUTPUT chain
FORWARD chain

B. NAT Table—includes three chains:

PREROUTING chain—transfers the destination IP address (DNAT)
POSTROUTING chain—works after the routing process and before the Ethernet device process to transfer
the source IP address (SNAT)
OUTPUT chain—produces local packets

sub-tables
Source NAT (SNAT)—changes the first source packet IP address
Destination NAT (DNAT)—changes the first destination packet IP address
MASQUERADE—a special form for SNAT. If one host can connect to internet, then other computers that
connect to this host can connect to the Internet even if these computers does not have an actual IP
address.
REDIRECT—a special form of DNAT that re-sends packets to a local host independent of the destination
IP address.

C. Mangle Table—includes two chains

PREROUTING chain—pre-processes packets before the routing process.
OUTPUT chain—processes packets after the routing process.
It has three extensions—TTL, MARK, TOS.

W321/341 Linux

 -4

The following figure shows the IPTABLES hierarchy.

Table Chain Rule

NAT

Network translation

translation)

PREROUTING Types of rule

 Policy

 Self-defined

Targets of rule
 ACCEPT
 DROP
 REJECT
 LOG
 SNAT
 DNAT
 MASQUERADE
…

POSTROUTING

OUTPUT

Filter (Default)

(Packet filtering)

INPUT

OUTPUT

FORWARD

Mangle

(Packet header

PREROUTING

W321/341 Linux

 -5

modification) INPUT

FORWARD

OUTPUT

POSTROUTING

The W321/341 supports the following sub-modules. Be sure to use the module that matches your application.

x_tables.ko xt_hl.ko nfnetlink.ko xt_DSCP.ko
xt_mark.ko nfnetlink_queue.ko xt_HL.ko xt_tcpudp.ko
arp_tables.ko ipt_MASQUERADE.ko iptable_nat.ko arpt_mangle.ko
ipt_REJECT.ko iptable_raw.ko arptable_filter.ko ipt_ULOG..ko
nf_conntrack_ipv4.ko ip_queue.ko ipt_addrtype.ko nf_defrag_ipv4.ko
ip_tables.ko ipt_ecn.ko nf_nat.ko ipt_ECN.ko
iptable_filter.ko ipt_LOG..ko iptable_mangle.ko

NOTE The W321/341 Do NOT support IPV6 and ipchains.

The basic syntax to enable and load an IPTABLES module is as follows:

#lsmod
#modprobe ip_tables
#modprobe iptable_filter

Use lsmod to check if the ip_tables module has already been loaded in the W321/341 unit. Use modprobe to
insert and enable the module.

Use the following command to load the modules (iptable_filter, iptable_mangle, iptable_nat):

#modprobe iptable_filter

 Use the following commands to maintain the database:

 #iptables, #iptables-restore #iptables-save

NOTE IPTABLES plays the role of packet filtering or NAT. Take care when setting up the IPTABLES rules. If the rules
are not correct, remote hosts that connect via a LAN or PPP may be denied access. We recommend using the
serial console to set up the IPTABLES.

Click on the following links for more information about iptables.
http://www.linuxguruz.com/iptables/
http://www.netfilter.org/documentation/HOWTO//packet-filtering-HOWTO.html

http://www.linuxguruz.com/iptables/
http://www.netfilter.org/documentation/HOWTO/packet-filtering-HOWTO.html

W321/341 Linux

 -6

Since the IPTABLES command is very complex, to illustrate the IPTABLES syntax we have divided our
discussion of the various rules into three categories: Observe and erase chain rules, Define policy
rules, and Append or delete rules.

Observe and erase chain rules

Usage:

iptables [-t tables] [-L] [-n]

-t tables: Table to manipulate (default: ‘filter’); example: nat or filter.
-L [chain]: List List all rules in selected chains. If no chain is selected, all chains are listed.
-n: Numeric output of addresses and ports.

iptables [-t tables] [-FXZ]

-F: Flush the selected chain (all the chains in the table if none is listed).
-X: Delete the specified user-defined chain.
-Z: Set the packet and byte counters in all chains to zero.

Examples:

iptables -L -n

In this example, since we do not use the -t parameter, the system uses the default ‘filter’ table. Three chains
are included: INPUT, OUTPUT, and FORWARD. INPUT chains are accepted automatically, and all connections
are accepted without being filtered.

#iptables –F
#iptables –X
#iptables –Z

Define policy for chain rules

Usage:

iptables [-t tables] [-P] [INPUT, OUTPUT, FORWARD, PREROUTING, OUTPUT, POSTROUTING]
[ACCEPT, DROP]

-P: Set the policy for the chain to the given target.
INPUT: For packets coming into the W321/341.
OUTPUT: For locally-generated packets.
FORWARD: For packets routed out through the W321/341.
PREROUTING: To alter packets as soon as they come in.
POSTROUTING: To alter packets as they are about to be sent out.

Examples:

#iptables –P INPUT DROP
#iptables –P OUTPUT ACCEPT
#iptables –P FORWARD ACCEPT
#iptables –t nat –P PREROUTING ACCEPT
#iptables –t nat –P OUTPUT ACCEPT
#iptables -t nat –P POSTROUTING ACCEPT

In this example, the policy accepts outgoing packets and denies incoming packets.

W321/341 Linux

 -7

Append or delete rules

Usage:

iptables [-t table] [-AI] [INPUT, OUTPUT, FORWARD] [-io interface] [-p tcp, udp,
icmp, all] [-s IP/network] [--sport ports] [-d IP/network] [--dport ports] –j [ACCEPT.
DROP]

-A: Append one or more rules to the end of the selected chain.
-I: Insert one or more rules in the selected chain as the given rule number.
-i: Name of an interface via which a packet is going to be received.
-o: Name of an interface via which a packet is going to be sent.
-p: The protocol of the rule or of the packet to check.
-s: Source address (network name, host name, network IP address, or plain IP address).
--sport: Source port number.
-d: Destination address.
--dport: Destination port number.
-j: Jump target. Specifies the target of the rules; i.e., how to handle matched packets. For
example, ACCEPT the packet, DROP the packet, or LOG the packet.

Examples:

Example 1: Accept all packets from lo interface.
iptables –A INPUT –i lo –j ACCEPT

Example 2: Accept TCP packets from 192.168.0.1.
iptables –A INPUT –i eth0 –p tcp –s 192.168.0.1 –j ACCEPT

Example 3: Accept TCP packets from Class C network 192.168.1.0/24.
iptables –A INPUT –i eth0 –p tcp –s 192.168.1.0/24 –j ACCEPT

Example 4: Drop TCP packets from 192.168.1.25.
iptables –A INPUT –i eth0 –p tcp –s 192.168.1.25 –j DROP

Example 5: Drop TCP packets addressed for port 21.
iptables –A INPUT –i eth0 –p tcp --dport 21 –j DROP

Example 6: Accept TCP packets from 192.168.0.24 to W341’s port 137, 138, 139
iptables –A INPUT –i eth0 –p tcp –s 192.168.0.24 --dport 137:139 –j ACCEPT

Example 7: Drop all packets from MAC address 01:02:03:04:05:06.
iptables –A INPUT –i eth0 –p all –m mac -–mac-source 01:02:03:04:05:06 –j DROP

NOTE: In Example 7, remember to issue the command #modprobe ipt_mac first to load module ipt_mac.

NAT
NAT (Network Address Translation) protocol translates IP addresses used on one network to different IP
addresses used on another network. One network is designated the inside network and the other is the outside
network. Typically, the W321/341 connect several devices on a network and maps local inside network
addresses to one or more global outside IP addresses, and un-maps the global IP addresses on incoming
packets back into local IP addresses.

NOTE Click on the following links for more information about iptables and NAT:
http://www.netfilter.org/documentation/HOWTO/NAT-HOWTO.html

http://www.netfilter.org/documentation/HOWTO/NAT-HOWTO.html

W321/341 Linux

 -8

NAT Example
The IP address of LAN1 is changed to 192.168.3.127 (you will need to load the module ipt_MASQUERADE):

1. #echo 1 > /proc/sys/net/ipv4/ip_forward

2. #modprobe ip_tables

3. #modprobe iptable_filter

4. #modprobe ip_conntrack

5. #modprobe iptable_nat

6. #modprobe ipt_MASQUERADE

7. #iptables -t nat -A POSTROUTING -o eth0 -j SNAT --to-source 192.168.3.127

8. #iptables -t nat -A POSTROUTING -o eth0 -s 192.168.3.0/24 -j MASQUERADE

Enabling NAT at Bootup
In most real world situations, you will want to use a simple shell script to enable NAT when the W341 boots up.
The following script is an example.

#!/bin/bash
If you put this shell script in the /home/nat.sh
Remember to chmod 744 /home/nat.sh
Edit the rc.local file to make this shell startup automatically.
vi /etc/rc.d/rc.local
Add a line in the end of rc.local /home/nat.sh
EXIF=‘eth0’ #This is an external interface for setting up a valid IP address.
EXNET=‘192.168.4.0/24’ #This is an internal network address.
Step 1. Insert modules.
Here 2> /dev/null means the standard error messages will be dump to null device.
modprobe ip_tables 2> /dev/null
modprobe ip_conntrack 2> /dev/null
modprobe ip_conntrack_ftp 2> /dev/null
modprobe ip_conntrack_irc 2> /dev/null
modprobe iptable_nat 2> /dev/null
modprobe ip_nat_ftp 2> /dev/null

W321/341 Linux

 -9

modprobe ip_nat_irc 2> /dev/null
Step 2. Define variables, enable routing and erase default rules.
PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin
export PATH
echo “1” > /proc/sys/net/ipv4/ip_forward
/bin/iptables -F
/bin/iptables -X
/bin/iptables -Z
/bin/iptables -F -t nat
/bin/iptables -X -t nat
/bin/iptables -Z -t nat
/bin/iptables -P INPUT ACCEPT
/bin/iptables -P OUTPUT ACCEPT
/bin/iptables -P FORWARD ACCEPT
/bin/iptables -t nat -P PREROUTING ACCEPT
/bin/iptables -t nat -P POSTROUTING ACCEPT
/bin/iptables -t nat -P OUTPUT ACCEPT
Step 3. Enable IP masquerade.

Dial-up Service—PPP
PPP (Point to Point Protocol) is used to run IP (Internet Protocol) and other network protocols over a serial link.
PPP can be used for direct serial connections (using a null-modem cable) over a Telnet link, and links
established using a modem over a telephone line.

Modem / PPP access is almost identical to connecting directly to a network through the W321/341’s Ethernet
port. Since PPP is a peer-to-peer system, the W321/341 can also use PPP to link two networks (or a local
network to the Internet) to create a Wide Area Network (WAN).

NOTE Click on the following links for more information about ppp: http://tldp.org/HOWTO/PPP-HOWTO/index.html
http://axion.physics.ubc.ca/ppp-linux.html

The pppd daemon is used to connect to a PPP server from a Linux system. For detailed information about pppd
see the man page.

Example 1: Connecting to a PPP server over a simple dial-up connection

The following command is used to connect to a PPP server by modem. Use this command for old ppp servers
that prompt for a login name (replace username with the correct name) and password (replace password with
the correct password). Note that debug and defaultroute 192.1.1.17 are optional.

#pppd connect ‘chat -v “ “ ATDT5551212 CONNECT “ “ ogin: username word: password’
/dev/ttyM0 115200 debug crtscts modem defaultroute

If the PPP server does not prompt for the username and password, the command should be entered as follows.
Replace username with the correct username and replace password with the correct password.

#pppd connect ‘chat -v “ “ ATDT5551212 CONNECT “ “‘user username
password password /dev/ttyM0 115200 crtscts modem

The pppd options are described below:

connect ‘chat etc...’

This option gives the command to contact the PPP server. The ‘chat’ program is used to dial a remote computer.
The entire command is enclosed in single quotes because pppd expects a one-word argument for the ‘connect’
option. The options for ‘chat’ are given below:

http://axion.physics.ubc.ca/ppp-linux.html

W321/341 Linux

 -10

-v

verbose mode; log what we do to syslog

“ “

Double quotes—don’t wait for a prompt, but instead do ... (note that you must include a space after the second
quotation mark)

ATDT5551212

Dial the modem, and then ...

CONNECT

Wait for an answer.

“ “

Send a return (null text followed by the usual return)

ogin: username word: password

Log in with username and password.

Refer to the chat man page, chat.8, for more information about the chat utility.

/dev/

Specify the callout serial port.

115200

The baudrate.

debug

Log status in syslog.

crtscts

Use hardware flow control between computer and modem (at 115200 this is a must).

modem

Indicates that this is a modem device; pppd will hang up the phone before and after making the call.

defaultroute

Once the PPP link is established, make it the default route; if you have a PPP link to the Internet, this is probably
what you want.

192.1.1.17

This is a degenerate case of a general option of the form x.x.x.x:y.y.y.y. Here x.x.x.x is the local IP address and
y.y.y.y is the IP address of the remote end of the PPP connection. If this option is not specified, or if just one
side is specified, then x.x.x.x defaults to the IP address associated with the local machine’s hostname (located
in /etc/hosts), and y.y.y.y is determined by the remote machine.

Example 2: Connecting to a PPP server over a hard-wired link

If a username and password are not required, use the following command (note that noipdefault is optional):

#pppd connect ‘chat –v “ “ “ “ ‘ noipdefault /dev/ttyM0 19200 crtscts “

If a username and password is required, use the following command (note that noipdefault is optional, and root
is both the username and password):

#pppd connect ‘chat –v “ “ “ “ ‘ user root password root noipdefault
/dev/ttyM0 19200 crtscts

How to check the connection

Once you’ve set up a PPP connection, there are some steps you can take to test the connection. First, type:

/sbin/ifconfig

W321/341 Linux

 -11

(The folder ifconfig may be located elsewhere, depending on your distribution.) You should be able to see all
the network interfaces that are UP. ppp0 should be one of them, and you should recognize the first IP address
as your own, and the “P-t-P address” (or point-to-point address) the address of your server. Here’s what it
looks like on one machine:

lo Link encap Local Loopback
inet addr 127.0.0.1 Bcast 127.255.255.255 Mask 255.0.0.0
UP LOOPBACK RUNNING MTU 2000 Metric 1
RX packets 0 errors 0 dropped 0 overrun 0

ppp0 Link encap Point-to-Point Protocol
inet addr 192.76.32.3 P-t-P 129.67.1.165 Mask 255.255.255.0
UP POINTOPOINT RUNNING MTU 1500 Metric 1
RX packets 33 errors 0 dropped 0 overrun 0
TX packets 42 errors 0 dropped 0 overrun 0

Now, type:

ping z.z.z.z

where z.z.z.z is the address of your name server. This should work. Here’s what the response could look like:

waddington:~$p ping 129.67.1.165
PING 129.67.1.165 (129.67.1.165): 56 data bytes
64 bytes from 129.67.1.165: icmp_seq=0 ttl=225 time=268 ms
64 bytes from 129.67.1.165: icmp_seq=1 ttl=225 time=247 ms
64 bytes from 129.67.1.165: icmp_seq=2 ttl=225 time=266 ms
^C
--- 129.67.1.165 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 247/260/268 ms
waddington:~$

Try typing:

netstat –nr

This should show three routes, something like this:

Kernel routing table
Destination iface Gateway Genmask Flags Metric Ref Use
129.67.1.165 ppp0 0.0.0.0 255.255.255.255 UH 0 0 6
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 ppp0 129.67.1.165 0.0.0.0 UG 0 0 6298
If your output looks similar but doesn’t have the destination 0.0.0.0 line (which refers to the default route used
for connections), you may have run pppd without the ‘defaultroute’ option. At this point you can try using
Telnet, ftp, or finger, bearing in mind that you’ll have to use numeric IP addresses unless you’ve set up
/etc/resolv.conf correctly.

Setting up a Machine for Incoming PPP Connections

This first example applies to using a modem, and requiring authorization with a username and password.

pppd/dev/ttyM0 115200 crtscts modem 192.168.16.1:192.168.16.2 login auth

You should also add the following line to the file /etc/ppp/pap-secrets:

* * ““ *

The first star (*) lets everyone login. The second star (*) lets every host connect. The pair of double quotation
marks (““) is to use the file /etc/passwd to check the password. The last star (*) is to let any IP connect.

W321/341 Linux

 -12

The following example does not check the username and password:

pppd/dev/ttyM0 115200 crtscts modem 192.168.16.1:192.168.16.2

PPPoE
1. Connect the W321/341’s LAN port to an ADSL modem with a cross-over cable, HUB, or switch.

2. Log in to the W321/341 as the root user.

3. Edit the file /etc/ppp/chap-secrets and add the following: “username@hinet.net”*“password”*

“username@hinet.net” is the username obtained from the ISP to log in to the ISP
account. “password” is the corresponding password for the account.

4. Edit the file /etc/ppp/pap-secrets and add the following:

“username@hinet.net”*“password”*

“username@hinet.net” is the username obtained from the ISP to log in to the ISP
account. “password” is the corresponding password for the account.

5. Edit the file /etc/ppp/options and add the following line:

plugin pppoe

W321/341 Linux

 -13

6. Add one of two files: /etc/ppp/options.eth0 or /etc/ppp/options.eth1. The choice depends on which
LAN is connected to the ADSL modem. If you use LAN1 to connect to the ADSL modem, then
add /etc/ppp/options.eth0. If you use LAN2 to connect to the ADSL modem, then
add /etc/ppp/options.eth1. The file context is shown below:

Type your username (the one you set in the /etc/ppp/pap-secrets and /etc/ppp/chap-secrets files)
after the “name” option. You may add other options as desired.

7. Set up DNS

If you are using DNS servers supplied by your ISP, edit the file

/etc/resolv.conf by adding the following lines of code:
nameserver ip_addr_of_first_dns_server
nameserver ip_addr_of_second_dns_server

For example:
nameserver 168..95.1.1
nameserver 139.175.10.20

8. Use the following command to create a pppoe connection:

pppd eth0

W321/341 Linux

 -14

The eth0 is what is connected to the ADSL modem LAN port. The example above uses LAN1. To use LAN2,
type:
pppd eth1

9. Type ifconfig ppp0 to check if the connection is OK or has failed. If the connection is OK, you will see
information about the ppp0 setting for the IP address. Use ping to test the IP.

10. If you want to disconnect it, use the kill command to kill the pppd process.

NFS (Network File System)
The Network File System (NFS) is used to mount a disk partition on a remote machine, as if it were on a local
hard drive, allowing fast, seamless sharing of files across a network. NFS allows users to develop applications
for the W321/341, without worrying about the amount of disk space that will be available. The W321/341
supports NFS protocol for client.

NOTE Click on the following links for more information about
NFS: http://www.tldp.org/HOWTO/NFS-HOWTO/index.html
http://nfs.sourceforge.net/nfs-howto/client.html
http://nfs.sourceforge.net/nfs-howto/server.html

Setting up the W321/341 as an NFS Client
The following procedure is used to mount a remote NFS Server.

1. To know the NFS Server’s shared directory.

2. Establish a mount point on the NFS Client site.

3. Mount the remote directory to a local directory.

#mkdir –p /home/nfs/public
#mount –t nfs NFS_Server(IP):/directory /mount/point

Example:
#mount –t nfs 192.168.3.100:/home/public /home/nfs/public

SNMP
The W321/341 have built-in SNMP V1 (Simple Network Management Protocol) agent software. It supports
RFC1317 RS-232 like group and RFC 1213 MIB-II.

The following simple example allows you to use an SNMP browser on the host site to query the W321/341,
which is the SNMP agent. The W321/341 will respond.

debian:~# snmpwalk -v 1 -c public -Cc 192.168.27.115

iso.3.6.1.2.1.1.1.0 = STRING: "Linux version 2.6.38.8 (root@Lock-Lin) (gcc version 4.4.2 (GCC)) #46 Thu Mar 14 09:36:46 CST
2013
"
iso.3.6.1.2.1.1.2.0 = OID: iso.3.6.1.4.1.8691.12.321
iso.3.6.1.2.1.1.3.0 = Timeticks: (901200) 2:30:12.00
iso.3.6.1.2.1.1.4.0 = STRING: "Moxa Inc., Embedded Computing Business."
iso.3.6.1.2.1.1.5.0 = STRING: "Moxa"
iso.3.6.1.2.1.1.6.0 = STRING: "Fl.8 No.6, Alley 6, Lane 235, Pao-Chiao Rd., Shing Tien City, Taipei, Taiwan, R.O.C."
iso.3.6.1.2.1.1.7.0 = INTEGER: 6

http://www.tldp.org/HOWTO/NFS-HOWTO/index.html
http://nfs.sourceforge.net/nfs-howto/client.html
http://nfs.sourceforge.net/nfs-howto/server.html

W321/341 Linux

 -15

iso.3.6.1.2.1.2.1.0 = INTEGER: 2
iso.3.6.1.2.1.2.2.1.1.1 = INTEGER: 1
iso.3.6.1.2.1.2.2.1.1.2 = INTEGER: 2
iso.3.6.1.2.1.2.2.1.2.1 = STRING: "eth0"
iso.3.6.1.2.1.2.2.1.2.2 = STRING: "wlan0"
iso.3.6.1.2.1.2.2.1.3.1 = INTEGER: 6
iso.3.6.1.2.1.2.2.1.3.2 = INTEGER: 6
iso.3.6.1.2.1.2.2.1.4.1 = INTEGER: 1500
iso.3.6.1.2.1.2.2.1.4.2 = INTEGER: 1500
iso.3.6.1.2.1.2.2.1.5.1 = Gauge32: 100000000
iso.3.6.1.2.1.2.2.1.5.2 = Gauge32: 100000000
iso.3.6.1.2.1.2.2.1.6.1 = Hex-STRING: 00 90 E8 77 10 0B
iso.3.6.1.2.1.2.2.1.6.2 = Hex-STRING: 00 0E 8E 41 0A 42
iso.3.6.1.2.1.2.2.1.7.1 = INTEGER: 1
iso.3.6.1.2.1.2.2.1.7.2 = INTEGER: 1
iso.3.6.1.2.1.2.2.1.8.1 = INTEGER: 1
iso.3.6.1.2.1.2.2.1.8.2 = INTEGER: 1
iso.3.6.1.2.1.2.2.1.9.1 = Timeticks: (0) 0:00:00.00
iso.3.6.1.2.1.2.2.1.9.2 = Timeticks: (0) 0:00:00.00
iso.3.6.1.2.1.2.2.1.10.1 = Counter32: 5785056
iso.3.6.1.2.1.2.2.1.10.2 = Counter32: 63760787
iso.3.6.1.2.1.2.2.1.11.1 = Counter32: 56041
iso.3.6.1.2.1.2.2.1.11.2 = Counter32: 396459
iso.3.6.1.2.1.2.2.1.12.1 = Counter32: 0
iso.3.6.1.2.1.2.2.1.12.2 = Counter32: 0
iso.3.6.1.2.1.2.2.1.13.1 = Counter32: 9174
iso.3.6.1.2.1.2.2.1.13.2 = Counter32: 0
…
iso.3.6.1.2.1.7.5.1.1.192.168.27.115.111 = IpAddress: 192.168.27.115
iso.3.6.1.2.1.7.5.1.1.192.168.27.115.161 = IpAddress: 192.168.27.115
iso.3.6.1.2.1.7.5.1.2.192.168.27.115.111 = INTEGER: 111
iso.3.6.1.2.1.7.5.1.2.192.168.27.115.161 = INTEGER: 161
iso.3.6.1.2.1.11.1.0 = Counter32: 191
iso.3.6.1.2.1.11.2.0 = Counter32: 191
iso.3.6.1.2.1.11.3.0 = Counter32: 0
iso.3.6.1.2.1.11.4.0 = Counter32: 0
iso.3.6.1.2.1.11.5.0 = Counter32: 0
iso.3.6.1.2.1.11.6.0 = Counter32: 0
iso.3.6.1.2.1.11.8.0 = Counter32: 0
iso.3.6.1.2.1.11.9.0 = Counter32: 0
iso.3.6.1.2.1.11.10.0 = Counter32: 0
iso.3.6.1.2.1.11.11.0 = Counter32: 0
iso.3.6.1.2.1.11.12.0 = Counter32: 0
iso.3.6.1.2.1.11.13.0 = Counter32: 201
iso.3.6.1.2.1.11.14.0 = Counter32: 0
iso.3.6.1.2.1.11.15.0 = Counter32: 0
iso.3.6.1.2.1.11.16.0 = Counter32: 204
iso.3.6.1.2.1.11.17.0 = Counter32: 0
iso.3.6.1.2.1.11.18.0 = Counter32: 0
iso.3.6.1.2.1.11.19.0 = Counter32: 0
iso.3.6.1.2.1.11.20.0 = Counter32: 0
iso.3.6.1.2.1.11.21.0 = Counter32: 0
iso.3.6.1.2.1.11.22.0 = Counter32: 0
iso.3.6.1.2.1.11.24.0 = Counter32: 0
iso.3.6.1.2.1.11.25.0 = Counter32: 0

W321/341 Linux

 -16

iso.3.6.1.2.1.11.26.0 = Counter32: 0
iso.3.6.1.2.1.11.27.0 = Counter32: 0
iso.3.6.1.2.1.11.28.0 = Counter32: 215
iso.3.6.1.2.1.11.29.0 = Counter32: 0
iso.3.6.1.2.1.11.30.0 = INTEGER: 2
End of MIB

NOTE Click on the following links for more information about MIB II and RS-232 like
groups: http://www.faqs.org/rfcs/rfc1213.html
http://www.faqs.org/rfcs/rfc1317.html

 W321/341 do NOT support SNMP trap.

OpenVPN
OpenVPN provides two types of tunnels for users to implement VPNS: Routed IP Tunnels and Bridged
Ethernet Tunnels. To begin with

1. check to make sure that the system has a virtual device /dev/net/tun. If not, issue the following
command:

mknod /dev/net/tun c 10 200

2. Enable OpenVPN driver

root@Moxa:/# modprobe tun

An Ethernet bridge is used to connect different Ethernet networks together. The Ethernets are bundled into one
bigger, “logical” Ethernet. Each Ethernet corresponds to one physical interface (or port) that is connected to the
bridge.

On each OpenVPN machine, you should generate a working directory, such as /etc/openvpn, where script
files and key files reside. Once established, all operations will be performed in that directory.

Setup 1: Ethernet Bridging for Private Networks on Different Subnets

1. Set up four machines, as shown in the following diagram.

Host A (B) represents one of the machines that belongs to OpenVPN A (B). The two remote subnets are
configured for a different range of IP addresses. When this setup is moved to a public network, the external
interfaces of the OpenVPN machines should be configured for static IPs, or connect to another device (such
as a firewall or DSL box) first.

http://www.faqs.org/rfcs/rfc1213.html
http://www.faqs.org/rfcs/rfc1317.html

W321/341 Linux

 -17

openvpn --genkey --secret secrouter.key

Copy the file that is generated to the OpenVPN machine. Be sure that both two of the devices have the
same key.

2. Generate a script file named openvpn-bridge on each OpenVPN machine. This script reconfigures
interface “eth1” as IP-less, creates logical bridge(s) and TAP interfaces, loads modules, enables IP
forwarding, etc.

#---------------------------------Start-----------------------------

#!/bin/sh

iface=eth1 # defines the internal interface
maxtap=`expr 1` # defines the number of tap devices. I.e., # of tunnels

IPADDR=
NETMASK=
BROADCAST=

it is not a great idea but this system doesn’t support
/etc/sysconfig/network-scripts/ifcfg-eth1
ifcfg_vpn()
{
while read f1 f2 f3 f4 r3
do
 if [“$f1” = “iface” -a “$f2” = “$iface” -a “$f3” = “inet” -a “$f4” = “static”];then
 i=`expr 0`
 while :
 do
 if [$i -gt 5]; then
 break
 fi
 i=`expr $i + 1`
 read f1 f2
 case “$f1” in
 address) IPADDR=$f2
 ;;
 netmask) NETMASK=$f2
 ;;
 broadcast) BROADCAST=$f2
 ;;
 esac
 done
 break
 fi
done < /etc/network/interfaces
}

get the ip address of the specified interface
mname=
module_up()
{
 oIFS=$IFS
 IFS=‘
 ‘
 FOUND=“no”
 for LINE in `lsmod`
 do

W321/341 Linux

 -18

 TOK=`echo $LINE | cut -d’ ‘ -f1`
 if [“$TOK” = “$mname”]; then
 FOUND=“yes”;
 break;
 fi
 done
 IFS=$oIFS
 if [“$FOUND” = “no”]; then
 modprobe $mname
 fi
}

start()
{
ifcfg_vpn
if [! \(-d “/dev/net” \)]; then
 mkdir /dev/net
fi

if [! \(-r “/dev/net/tun” \)]; then
 # create a device file if there is none
 mknod /dev/net/tun c 10 200
fi
load modules “tun” and “bridge”
mname=tun
module_up
mname=bridge
module_up
create an ethernet bridge to connect tap devices, internal interface
brctl addbr br0
brctl addif br0 $iface
the bridge receives data from any port and forwards it to other ports.

i=`expr 0`
while :
do
 # generate a tap0 interface on tun
 openvpn --mktun --dev tap${i}

 # connect tap device to the bridge
 brctl addif br0 tap${i}

 # null ip address of tap device
 ifconfig tap${i} 0.0.0.0 promisc up

 i=`expr $i + 1`
 if [$i -ge $maxtap]; then
 break
 fi
done

null ip address of internal interface
ifconfig $iface 0.0.0.0 promisc up

enable bridge ip
ifconfig br0 $IPADDR netmask $NETMASK broadcast $BROADCAST

ipf=/proc/sys/net/ipv4/ip_forward
enable IP forwarding
echo 1 > $ipf

W321/341 Linux

 -19

echo “ip forwarding enabled to”
cat $ipf
}

stop() {
echo “shutdown openvpn bridge.”
ifcfg_vpn
i=`expr 0`
while :
do
 # disconnect tap device from the bridge
 brctl delif br0 tap${i}
 openvpn --rmtun --dev tap${i}

 i=`expr $i + 1`
 if [$i -ge $maxtap]; then
 break
 fi
done
brctl delif br0 $iface
brctl delbr br0
ifconfig br0 down
ifconfig $iface $IPADDR netmask $NETMASK broadcast $BROADCAST
killall -TERM openvpn
}

case “$1” in
 start)
 start
 ;;
 stop)
 stop
 ;;
 restart)
 stop
 start
 ;;
 *)
 echo “Usage: $0 [start|stop|restart]”
 exit 1
esac
exit 0
#---------------------------------- end -----------------------------

Create link symbols to enable this script at boot time:

ln -s /etc/openvpn/openvpn-bridge /etc/rc.d/rc3.d/S32vpn-br # for example
ln -s /etc/openvpn/openvpn-bridge /etc/rc.d/rc6.d/K32vpn-br # for example

3. Create a configuration file named A-tap0-br.conf and an executable script file named A-tap0-br.sh on
OpenVPN A.

point to the peer
remote 192.168.8.174
dev tap0
secret /etc/openvpn/secrouter.key
cipher DES-EDE3-CBC
auth MD5
tun-mtu 1500

W321/341 Linux

 -20

tun-mtu-extra 64
ping 40
up /etc/openvpn/A-tap0-br.sh

#----------------------------------Start------------------------------
#!/bin/sh
value after “-net” is the subnet behind the remote peer
route add -net 192.168.4.0 netmask 255.255.255.0 dev br0
#---------------------------------- end ------------------------------

Create a configuration file named B-tap0-br.conf and an executable script file named B-tap0-br.sh on
OpenVPN B.

point to the peer
remote 192.168.8.173
dev tap0
secret /etc/openvpn/secrouter.key
cipher DES-EDE3-CBC
auth MD5 tun-mtu 1500
tun-mtu-extra 64
ping 40
up /etc/openvpn/B-tap0-br.sh

#----------------------------------Start------------------------------
#!/bin/sh
value after “-net” is the subnet behind the remote peer
route add -net 192.168.2.0 netmask 255.255.255.0 dev br0
#---------------------------------- end ------------------------------

NOTE: Select cipher and authentication algorithms by specifying “cipher” and “auth”. To see with
algorithms are available, type:

openvpn --show-ciphers
openvpn --show—auths

4. Start both of OpenVPN peers,

openvpn --config A-tap0-br.conf&
openvpn --config B-tap0-br.conf&

If you see the line “Peer Connection Initiated with 192.168.8.173:5000” on each machine, the connection
between OpenVPN machines has been established successfully on UDP port 5000.

5. On each OpenVPN machine, check the routing table by typing the command:

route

Destination Gateway Genmsk Flags Metric Ref Use Iface
192.168.4.0 * 255.255.255.0 U 0 0 0 br0

192.168.2.0 * 255.255.255.0 U 0 0 0 br0

192.168.8.0 * 255.255.255.0 U 0 0 0 eth0

Interface eth1 is connected to the bridging interface br0, to which device tap0 also connects, whereas the
virtual device tun sits on top of tap0. This ensures that all traffic from internal networks connected to
interface eth1 that come to this bridge write to the TAP/TUN device that the OpenVPN program monitors.
Once the OpenVPN program detects traffic on the virtual device, it sends the traffic to its peer.

6. To create an indirect connection to Host B from Host A, you need to add the following routing item:

route add –net 192.168.4.0 netmask 255.255.255.0 dev eth0

W321/341 Linux

 -21

To create an indirect connection to Host A from Host B, you need to add the following routing item:

route add –net 192.168.2.0 netmask 255.255.255.0 dev eth0

Now ping Host B from Host A by typing:

ping 192.168.4.174

A successful ping indicates that you have created a VPN system that only allows authorized users from one
internal network to access users at the remote site. For this system, all data is transmitted by UDP packets
on port 5000 between OpenVPN peers.

7. To shut down OpenVPN programs, type the command:

killall -TERM openvpn

Setup 2: Ethernet Bridging for Private Networks on the Same Subnet

1. Set up four machines as shown in the following diagram:

2. The configuration procedure is almost the same as for the previous example. The only difference is that you
will need to comment out the parameter “up” in “/etc/openvpn/A-tap0-br.conf” and
“/etc/openvpn/B-tap0-br.conf”.

Setup 3: Routed IP

1. Set up four machines as shown in the following diagram:

2. Create a configuration file named “A-tun.conf” and an executable script file named “A-tun. sh”.

W321/341 Linux

 -22

point to the peer
remote 192.168.8.174
dev tun
secret /etc/openvpn/secrouter.key
cipher DES-EDE3-CBC
auth MD5
tun-mtu 1500
tun-mtu-extra 64
ping 40
ifconfig 192.168.2.173 192.168.4.174
up /etc/openvpn/A-tun.sh

#----------------------------------Start------------------------------
#!/bin/sh
value after “-net” is the subnet behind the remote peer
route add -net 192.168.4.0 netmask 255.255.255.0 gw $5
#---------------------------------- end ------------------------------

Create a configuration file named B-tun.conf and an executable script file named B-tun.sh on OpenVPN B:

remote 192.168.8.173
dev tun
secret /etc/openvpn/secrouter.key
cipher DES-EDE3-CBC
auth MD5
tun-mtu 1500
tun-mtu-extra 64
ping 40
ifconfig 192.168.4.174 192.168.2.173
up /etc/openvpn/B-tun.sh

#----------------------------------Start------------------------------
#!/bin/sh
value after “-net” is the subnet behind the remote peer
route add -net 192.168.2.0 netmask 255.255.255.0 gw $5
#---------------------------------- end ------------------------------

Note that the parameter “ifconfig” defines the first argument as the local internal interface and the second
argument as the internal interface at the remote peer.

Note that $5 is the argument that the OpenVPN program passes to the script file. Its value is the second
argument of ifconfig in the configuration file.

3. Check the routing table after you run the OpenVPN programs, by typing the command:

route

Destination Gateway Genmsk Flags Metric Ref Use Iface
192.168.4.174 * 255.255.255.255 UH 0 0 0 tun0

192.168.4.0 192.168.4.174 255.255.255.0 UG 0 0 0 tun0

192.168.2.0 * 255.255.255.0 U 0 0 0 eth1

192.168.8.0 * 255.255.255.0 U 0 0 0 eth0

5
5. Tool Chains for Application

Development

This chapter describes how to install a tool chain in the host computer that you use to develop your applications.
In addition, the process of performing cross-platform development and debugging are also introduced. For
clarity, the W321/341 embedded computer is called a target computer.

The following topics are covered in this chapter:

 Linux Tool Chain

 Steps for Installing the Linux Tool Chain

 Compilation for Applications

W321/341 Linux Tool Chains for Application
Development

 5-2

Linux Tool Chain
The Linux tool chain contains a suite of cross compilers and other tools, as well as the libraries and header files
that are necessary to compile your applications. These tool chain components must be installed in your host
computer (PC) running Linux. We have confirmed that the following Linux distributions can be used to install
the tool chain.

Steps for Installing the Linux Tool Chain
The tool chain needs about 485 MB of hard disk space. To install it, follow the steps.

1. Insert the package CD into your PC and then issue the following commands:

#mount/dev/cdrom /mnt/cdrom

#sh/mnt/cdrom/tool-chain/W321/arm-linux_3.1_Build_11111411.sh

2. Wait for the installation process to complete. This should take a few minutes.

3. Add the directory /usr/local/arm-linux-4.4.2/bin to your path. You can do this for the current login by
issuing the following commands:

#export PATH=“/usr/local/arm-linux-4.4.2/bin:$PATH”

Alternatively, you can add the same commands to $HOME/.bash_profile to make it effective for all login
sessions.

Compilation for Applications
To compile a simple C application, use the cross compiler instead of the regular compiler:

#arm-linux-gcc –o example –Wall –g –O2 example.c
#arm-linux-strip –s example
#arm-linux-gcc -ggdb –o example-debug example.c

Most of the cross compiler tools are the same as their native compiler counterparts, but with an additional
prefix that specifies the target system. In the case of x86 environments, the prefix is i386-linux- and in the
case of W321/341 ARM boards, it is arm-linux-4.4.2.

For example, the native C compiler is gcc and the cross C compiler for ARM in the W321/341 is
arm-linux-gcc.

The following cross compiler tools are provided:

ar Manages archives (static libraries)

as Assembler

c++, g++ C++ compiler

cpp C preprocessor

gcc C compiler

gdb Debugger

ld Linker

nm Lists symbols from object files

objcopy Copies and translates object files

objdump Displays information about object files

ranlib Generates indexes to archives (static libraries)

readelf Displays information about ELF files

size Lists object file section sizes

strings Prints strings of printable characters from files (usually object files)

strip Removes symbols and sections from object files (usually debugging information)

6
6. Programmer's Guide

This chapter includes important information for programmers.

The following topics are covered in this chapter:

 Flash Memory Map

 Device API

 RTC (Real Time Clock)

 Buzzer

 WDT (Watch Dog Timer)

 Digital Input/Output(W321 only)

 Application Programming Interface

 DI/DO Program Makefile Example

 UART

 Relay Output (W341 only)

W321/341 Linux Programmer's Guide

 6-2

Flash Memory Map
Partition sizes are hard coded into the kernel binary. To change the partition sizes, you will need to rebuild the
kernel. The flash memory map is shown in the following table.

NOTE 1. The default Moxa file system only enables the network. It lets users recover the user file system when it
fails.

2. The user file system is a complete file system. Users can create and delete directories and files (including
source code and executable files) as needed.

3. Users can create the user file system on the PC host or target platform, and then copy it to the W321/341.

4. To improve system performance, we strongly recommend that you install your application programs on the
on-board flash. However, since the on-board flash has a fixed amount of free memory space, you must not
over-write it, and instead use an external storage card, such as an SD for the data log.

Device API
The W321/341 support control devices with the ioctl system API. You will need to include <moxadevice.h>,
and use the following ioctl function.

int ioctl(int d, int request,…);
 Input: int d - open device node return file handle
 int request – argument in or out

Use the desktop Linux’s man page for detailed documentation:

#man ioctl

RTC (Real Time Clock)
The device node is located at /dev/rtc. The W321/341 support Linux standard simple RTC control. You must
include <linux/rtc.h>.

1. Function: RTC_RD_TIME

int ioctl(fd, RTC_RD_TIME, struct rtc_time *time);

Description: read time information from RTC. It will return the value on argument 3.

2. Function: RTC_SET_TIME

int ioctl(fd, RTC_SET_TIME, struct rtc_time *time);

Description: set RTC time. Argument 3 will be passed to RTC.

Buzzer
The device node is located at /dev/console. The W321/341 support Linux standard buzzer control, with the
W321/341’s buzzer running at a fixed frequency of 100 Hz. You must include <sys/kd. h>.

Address Size Contents
0x80000000
– 0x80040000

256KB Boot Loader—Read ONLY

0x80040000– 0x80200000 1.75 MB Kernel object code—Read ONLY
0x80200000– 0x80a00000 8 MB Root file system (JFFS2) —Read ONLY
0x80a00000– 0x81000000 6MB User root file system (JFFS2) —Read/Write

W321/341 Linux Programmer's Guide

 6-3

Function: KDMKTONE

ioctl(fd, KDMKTONE, unsigned int arg);

Description: The buzzer’s behavior is determined by the argument arg. The “high word” part of arg gives
the length of time the buzzer will sound, and the “low word” part gives the frequency.

The buzzer’s on / off behavior is controlled by software. If you call the “ioctl” function, you MUST set the
frequency at 100 Hz. If you use a different frequency, the system could crash.

WDT (Watch Dog Timer)
1. Introduction

The WDT works like a watch dog function. You can enable it or disable it. When the user enables WDT but
the application does not acknowledge it, the system will reboot. You can set the ack time from a minimum
of 50 msec to a maximum of 60 seconds.

2. How the WDT works

The WatchDog is disabled when the system boots up. The user application can also enable ack. When the
user does not ack, it will let the system reboot.

Kernel boot
.....
....

User application running and enable user ack
....
....

3. The user API
1. Pinging the watchdog using an ioctl:

 All drivers that have an ioctl interface support at least one ioctl,

 KEEPALIVE. This ioctl does exactly the same thing as a write to the

 watchdog device, so the main loop in the above program could be

 replaced with:

 while (1) {

 ioctl(fd, WDIOC_KEEPALIVE, 0);

 sleep(10);

 }

 the argument to the ioctl is ignored.

2. For some drivers it is possible to modify the watchdog timeout on the fly with the SETTIMEOUT ioctl,

those drivers have the WDIOF_SETTIMEOUT flag set in their option field. The argument is an

integerrepresenting the timeout in seconds. The driver returns the real timeout used in the same

variable, and this timeout might differ from the requested one due to limitation of the hardware.

 int timeout = 45;

 ioctl(fd, WDIOC_SETTIMEOUT, &timeout);

 printf("The timeout was set to %d seconds\n", timeout);

W321/341 Linux Programmer's Guide

 6-4

This example might actually print "The timeout was set to 60 seconds" if the device has a granularity of
minutes for its timeout.

3. Query the current timeout using the GETTIMEOUT ioctl.

 ioctl(fd, WDIOC_GETTIMEOUT, &timeout);

 printf("The timeout was is %d seconds\n", timeout);

Example 1:

/*

 * Watchdog Driver Test Program

 */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <fcntl.h>

#include <sys/ioctl.h>

#include <linux/types.h>

#include <linux/watchdog.h>

int fd;

/*

 * This function simply sends an IOCTL to the driver, which in turn ticks

 * the PC Watchdog card to reset its internal timer so it doesn't trigger

 * a computer reset.

 */

static void keep_alive(void)

{

 int dummy;

 ioctl(fd, WDIOC_KEEPALIVE, &dummy);

}

/*

 * The main program. Run the program with "-d" to disable the card,

 * or "-e" to enable the card.

 */

int main(int argc, char *argv[])

{

 int flags, get_timeout = 0;

 int set_timeout = 60;

 fd = open("/dev/watchdog", O_WRONLY);

 if (fd == -1) {

 fprintf(stderr, "Watchdog device not enabled.\n");

 fflush(stderr);

 exit(-1);

W321/341 Linux Programmer's Guide

 6-5

 }

 if (argc > 1) {

 if (!strncasecmp(argv[1], "-d", 2)) {

 flags = WDIOS_DISABLECARD;

 ioctl(fd, WDIOC_SETOPTIONS, &flags);

 fprintf(stderr, "Watchdog card disabled.\n");

 fflush(stderr);

 exit(0);

 } else if (!strncasecmp(argv[1], "-e", 2)) {

 flags = WDIOS_ENABLECARD;

 ioctl(fd, WDIOC_SETOPTIONS, &flags);

 fprintf(stderr, "Watchdog card enabled.\n");

 fflush(stderr);

 exit(0);

 } else {

 fprintf(stderr, "-d to disable, -e to enable.\n");

 fprintf(stderr, "run by itself to tick the card.\n");

 fflush(stderr);

 exit(0);

 }

 } else {

 fprintf(stderr, "Watchdog Ticking Away!\n");

 fflush(stderr);

 }

 ioctl(fd, WDIOC_SETTIMEOUT, &set_timeout);

 printf("The timeout was set to %d seconds\n", set_timeout);

 ioctl(fd, WDIOC_GETTIMEOUT, &get_timeout);

 printf("The timeout was is %d seconds\n", get_timeout);

 while(1) {

 keep_alive();

 sleep(1);

 }

}

The makefile is shown below:

all:
 arm-linux-gcc –o xxxx xxxx.c

Example 2:

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <fcntl.h>

int main(void)

{

 int fd = open("/dev/watchdog", O_WRONLY);

 int ret = 0;

W321/341 Linux Programmer's Guide

 6-6

 if (fd == -1) {

 perror("watchdog");

 exit(EXIT_FAILURE);

 }

 while (1) {

 ret = write(fd, "\0", 1);

 if (ret != 1) {

 ret = -1;

 break;

 }

 sleep(10);

 }

 close(fd);

 return ret;

}

The makefile is shown below:

all:
 arm-linux-gcc –o xxxx xxxx.c

Digital Input/Output(W321 only)
Digital Output channels can be set to high or low. The channels are controlled by the function call

set_dout_state(). The Digital Input channels can be used to detect the state change of the digital input

signal. The DI channels can also be used to detect whether or not the state of a digital signal changes during

a fixed period of time. This can be done by the function call, set_din_event().Moxa provides 5 function

calls to handle the digital I/O state change and event handling.

Application Programming Interface

Return error code definitions:

#define DIO_ERROR_PORT -1 // no such port

#define DIO_ERROR_MODE -2 // no such mode or state

#define DIO_ERROR_CONTROL -3 // open or ioctl fail

#define DIO_ERROR_DURATION -4 // The value of duration is not 0 or not in the range,

40 <= duration <= 3600000 milliseconds (1 hour)

#define DIO_ERROR_DURATION_20MS -5 // The value of duration must be a multiple of 20 ms

#define DIO_OK 0

The definition for DIN and DOUT:
#define DIO_HIGH 1

#define DIO_LOW 0

int set_dout_state(int doport, int state)

Description: To set the DOUT port to high or low state.

Input: int doport - which DOUT port you want to set. Port starts from 0 to 3.

int state - to set high or low state; DIO_HIGH (1) for high, DIO_LOW (0) for low.

Output: none.

W321/341 Linux Programmer's Guide

 6-7

Return: reference the error code.

int get_din_state(int diport, int *state)

Description: To get the DIN port state.

Input: int diport - get the current state of which DIN port. Port numbering is from 0 to 3.

int *state - save the current state.

Output: state - DIO_HIGH (1) for high, DIO_LOW (0) for low.

Return: reference the error code.

int get_dout_state(int doport, int *state)

Description: To get the DOUT port state.

Input: int doport - get the current state of which DOUT port.

int *state - save the current state.

Output: state - DIO_HIGH (1) for high, DIO_LOW (0) for low.

Return: reference the error code.

int set_din_event(int diport, void (*func)(int diport), int mode, long int duration)

Description: Set the event for DIN when the state is changed from high to low or from low to high.

Input: int diport - the port that will be used to detect the DIN event.

Port numbering is from 0 to 3.

void (*func) (int diport) - Not NULL

> Returns the call back function. When the event occurs, the call back function will be invoked.

NULL

> Clears this event

int mode DIN_EVENT_HIGH_TO_LOW

(1): from high to low

DIN_EVENT_LOW_TO_HIGH

(0): from low to high

DIN_EVENT_CLEAR

(-1): clear this event

unsigned long duration - 0: detect the din event > DIN_EVENT_HIGH_TO_LOW or DIN_EVENT_LOW_TO_HIGH>

without duration

- Not 0

> detect the din event

DIN_EVENT_HIGH_TO_LOW or

DIN_EVENT_LOW_TO_HIGH with

duration. The value of “duration” must be a

multiple of 20 milliseconds. The range of

“duration” is 0, or 40 <= duration <= 3600000

milliseconds. The error of the measurement is

24 ms. For example, if the DIN duration is

200 ms, this event will be generated when the

DIN pin stays in the same state for a time

between 176 ms and 200 ms.

Output: none.

Return: reference the error code.

int get_din_event(int diport, int *mode, long int *duration)

Description: To retrieve the DIN event configuration, including mode

(DIN_EVENT_HIGH_TO_LOW or DIN_EVENT_LOW_TO_HIGH), and the value of “duration.”

W321/341 Linux Programmer's Guide

 6-8

Input: int diport - which DIN port you want to retrieve.

- The port whose din event setting we wish to retrieve

int *mode - save which event is set.

unsigned long *duration - the duration of the DIN port is kept in high or low state.

- return to the current duration value of diport

Output: mode DIN_EVENT_HIGH_TO_LOW

(1): from high to low

DIN_EVENT_LOW_TO_HIGH(0): from low to high

DIN_EVENT_CLEAR(-1): clear this event

duration The value of duration should be 0 or 40 <= duration

<= 3600000 milliseconds.

Return: reference the error code.

Special Note
Don’t forget to link the library libmoxalib which is under /usr/local/arm-linux-4.4.2/lib for DI/DO
programming, and also include the header file moxadevice.h which is
under/usr/local/arm-linux-4.4.2/include. The DI/DO library only can be used by one program at a
time.

Examples
Example 1
File Name: tdio.c
Description: The program indicates to connect DO1 to DI1, change the digital output state to high or low by manual input, then detect
and count the state changed events from DI1.
#include <stdio.h>

#include <stdlib.h>

#include <moxadevice.h>

#include <fcntl.h>

#ifdef DEBUG

#define dbg_printf(x...) printf(x)

#else

#define dbg_printf(x...)
#endif
#define MIN_DURATION 40

static char *DataString[2]={"Low ", "High "};

static void hightolowevent(int diport)

{

printf("\nDIN port %d high to low.\n", diport);

}

static void lowtohighevent(int diport)

{

printf("\nDIN port %d low to high.\n", diport);

}

int main(int argc, char * argv[])

{

int i, j, state, retval;

unsigned long duration;

while(1) {

printf("\nSelect a number of menu, other key to exit. \n\

W321/341 Linux Programmer's Guide

 6-9

1. set high to low event \n\

2. get now data. \n\

3. set low to high event \n\

4. clear event \n\

5. set high data. \n\

6. set low data. \n\

7. quit \n\

8. show event and duration \n\

Choose : ");

retval =0;

scanf("%d", &i);

if (i == 1) { // set high to low event

printf("Please keyin the DIN number : ");

scanf("%d", &i);

printf("Please input the DIN duration, this minimun value must be over %d : ", MIN_DURATION);

scanf("%lu", &duration);

retval=set_din_event(i, hightolowevent, DIN_EVENT_HIGH_TO_LOW, duration);

} else if (i == 2) { // get now data

printf("DIN data : ");

for (j=0; j<4; j++) {

get_din_state(j, &state);

printf("%s", DataString[state]);

}

printf("\n");

printf("DOUT data : ");

for (j=0; j<MAX_DOUT_PORT; j++) {

get_dout_state(j, &state);

printf("%s", DataString[state]);

}

printf("\n");

} else if (i == 3) { // set low to high event

printf("Please keyin the DIN number : ");

scanf("%d", &i);

printf("Please input the DIN duration, this minimun value must be over %d :",

MIN_DURATION);

scanf("%lu", &duration);

retval = set_din_event(i, lowtohighevent, DIN_EVENT_LOW_TO_HIGH, duration);

} else if (i == 4) { // clear event

printf("Please keyin the DIN number : ");

scanf("%d", &i);

retval=set_din_event(i, NULL, DIN_EVENT_CLEAR, 0);

} else if (i == 5) { // set high data

printf("Please keyin the DOUT number : ");

scanf("%d", &i);

retval=set_dout_state(i, 1);

} else if (i == 6) { // set low data
printf("Please keyin the DOUT number : ");

scanf("%d", &i);

retval=set_dout_state(i, 0);

} else if (i == 7) { // quit

break;

} else if (i == 8) { // show event and duration

printf("Event:\n");

for (j=0; j<MAX_DOUT_PORT; j++) {

retval=get_din_event(j, &i, &duration);

W321/341 Linux Programmer's Guide

 6-10

switch (i) {

case DIN_EVENT_HIGH_TO_LOW :

printf("(htl,%lu)", duration);

break;

case DIN_EVENT_LOW_TO_HIGH :

printf("(lth,%lu)", duration);

break;

case DIN_EVENT_CLEAR :

printf("(clr,%lu)", duration);

break;

default :

printf("err ");

break;

}

}

printf("\n");

} else {

printf("Select error, please select again !\n");

}

switch(retval) {

case DIO_ERROR_PORT:

printf("DIO error port\n");

break;

case DIO_ERROR_MODE:

printf("DIO error mode\n");

break;

case DIO_ERROR_CONTROL:

printf("DIO error control\n");

break;

case DIO_ERROR_DURATION:

printf("DIO error duratoin\n");

case DIO_ERROR_DURATION_20MS:

printf("DIO error! The duratoin is not a multiple of 20 ms\n");

break;

}

}

return 0;
}

DI/DO Program Makefile Example
FNAME=tdio

CC= arm-linux-gcc
STRIP=arm-linux-strip

LIBS += -L/usr/local/arm-linux-4.4.2/lib

CFLAGS += -I/usr/local/arm-linux-4.4.2/include

release:

$(CC) $(LDFLAGS) $(CFLAGS) -o $(FNAME) $(FNAME).c -lmoxalib -lpthread

$(STRIP) -s $(FNAME)

debug:

$(CC) -DDEBUG -o $(FNAME)-dbg $(FNAME).cxx -lmoxalib -lpthread

clean:
/bin/rm -f $(FNAME) $(FNAME)-dbg *.o

W321/341 Linux Programmer's Guide

 6-11

UART
The normal tty device node is located at /dev/ttyM0 … ttyM3.

The W321/341 support Linux standard termios control. The Moxa UART Device API allows you to configure
ttyM0 to ttyM3 as RS-232, RS-422, 4-wire RS-485, or 2-wire RS-485. The W321/341 support RS-232, RS-422,
2-wire RS-485, and 4-wire RS485.

You must include <moxadevice.h>.

#define RS232_MODE 0
#define RS485_2WIRE_MODE 1
#define RS422_MODE 2
#define RS485_4WIRE_MODE 3

1. Function: MOXA_SET_OP_MODE

int ioctl(fd, MOXA_SET_OP_MODE, &mode)

Description
Set the interface mode. Argument 3 mode will pass to the UART device driver and change it.

2. Function: MOXA_GET_OP_MODE

int ioctl(fd, MOXA_GET_OP_MODE, &mode)

Description
Get the interface mode. Argument 3 mode will return the interface mode.

There are two Moxa private ioctl commands for setting up special baudrates.

Function: MOXA_SET_SPECIAL_BAUD_RATE
Function: MOXA_GET_SPECIAL_BAUD_RATE

If you use this ioctl to set a special baudrate, the termios cflag will be B4000000, in which case the B4000000
define will be different. If the baudrate you get from termios (or from calling tcgetattr()) is B4000000, you
must call ioctl with MOXA_GET_SPECIAL_BAUD_RATE to get the actual baudrate.

Example to set the baudrate

#include <moxadevice.h>
#include <termios.h>
struct termios term;
int fd, speed;
fd = open(“/dev/ttyM0”, O_RDWR);
tcgetattr(fd, &term);
term. c_cflag &= ~(CBAUD | CBAUDEX);
term.c_cflag |= B4000000;
tcsetattr(fd, TCSANOW, &term);
speed = 500000;
ioctl(fd, MOXA_SET_SPECIAL_BAUD_RATE, &speed);

Example to get the baudrate

#include <moxadevice.h>
#include <termios.h>
struct termios term;
int fd, speed;
fd = open(“/dev/ttyM0”, O_RDWR);
tcgetattr(fd, &term);
if ((term.c_cflag & (CBAUD|CBAUDEX)) != B4000000) {

W321/341 Linux Programmer's Guide

 6-12

 // follow the standard termios baud rate define
} else {
 ioctl(fd, MOXA_GET_SPECIAL_BAUD_RATE, &speed);
}

Baudrate inaccuracy

Divisor = 921600/Target Baud Rate. (Only Integer part)
ENUM = 8 * (921600/Targer - Divisor) (Round up or down)
Inaccuracy = (Target Baud Rate – 921600/(Divisor + (ENUM/8))) / Target Baud Rate * 100%
E.g.,
To calculate 500000 bps
Divisor = 1, ENUM = 7,
Inaccuracy = 1.7%
*The Inaccuracy should less than 2% for work reliably.

Special Note

1. If the target baudrate is not a special baudrate (e.g. 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800,
2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600), the termios cflag will be set
to the same flag.

2. If you use stty to get the serial information, you will get speed equal to 0.

Relay Output (W341 only)
The W341 uses a DO (digital ouput) for relay output. Programming with the following API allows you to change
the state of the digital output and to get the current state of the digital output.

Example

Description: The program indicates how to control DO.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>

#define IOCTL_SET_DOUT 15

typedef struct _DGTIO
{
 int port;
 int data;
} DGTIO;

int main(void)
{
 int fd = open("/dev/relay_do", O_WRONLY);
 int ret = 0;
 DGTIO dio;

 if (fd == -1) {
 perror("open relay DO device failed");

W321/341 Linux Programmer's Guide

 6-13

 exit(EXIT_FAILURE);
 }

 dio.port = 0;
 dio.data = 1;

 /* set Relay DO high */
 ioctl(fd, IOCTL_SET_DOUT, &dio);
 sleep (5);

 dio.data = 0;

 /* set Relay DO low*/
 ioctl(fd, IOCTL_SET_DOUT, &dio);
 close(fd);
 return ret;
}

7
7. Software Lock

“Software Lock” is an innovative technology developed by the Moxa engineering team. It can be adopted by a
system integrator or developer to protect his applications from being copied. An application is compiled into a
binary format bound to the embedded computer and the operating system (OS) that the application runs on.
As long as one obtains it from the computer, he/she can install it into the same hardware and the same
operating system. The add-on value created by the developer is thus lost.

Moxa’s engineerings used data encryption to develop this protection mechanism for your applications. The
binary file associated with each of your applications needs to undergo an additional encryption process after
you have developed it. The process requires you to install an encryption key in the target computer.

1. Choose an encryption key (e.g.,”ABigKey”) and install it in the target computer by a pre- utility program,
‘setkey’.

#setkey ABigKey

NOTE: set an empty string to clear the encryption key in the target computer by:

#setkey ““

2. Develop and compile your program in the development PC.

3. In the development PC, run the utility program ‘binencryptor’ (under /usr/local/arm-linux-4.4.2/bin/ after
installing Tool Chain) to encrypt your program with an encryption key.

#binencryptor yourProgram ABigKey

4. Upload the encrypted program file to the target computerby FTP or NFS and test the program.

The encryption key is a computer-wise key. That is to say, a computer has only one key installed. Running the
program ‘setkey’ multiple times overrides the existing key.

To prove the effectiveness of this software protection mechanism, prepare a target computer that has not been
installed an encryption key or install a key different from that used to encrypt your program. In any case, the
encrypted program fails immediately.

This mechanism also allows the computer with an encryption key to bypass programs that are not encrypted.
Therefore, in the development phase, you can develop your programs and test them in the target computer
cleanly.

A
A. System Commands

Linux normal command utility collection

File Manager
1. cp copy file

2. ls list file

3. ln make symbolic link file

4. mount mount and check file system

5. rm delete file

6. chmod change file owner, group, and user

7. chown change file owner

8. chgrp change file group

9. sync sync file system, let system file buffer be saved to hardware

10. mv move file

11. pwd displays the current working directly

12. df displays the amount of free space on the device

13. mkdir make new directory

14. rmdir delete directory

15. find search for files in a directory hierarchy

16. head output the first part of files

17. mkfifo make a FIFO special file (a named pipe)

18. mknod creates a FIFO, character special file, or block special file with the specified name

19. touch change file timestamps

20. which Locate a program file in the user's path.

Editor
1. vi text editor

2. cat dump file context

3. zcat compress or expand files

4. grep search file for a specific pattern

5. egrep search string on file of Extended regular expressions

6. grep Search file(s) for lines that match a fixed string

7. cut get string on file

8. find find files

9. more dump file page by page

10. test test if file exists or not

11. sleep sleep (seconds)

W321/341 Linux System Commands

 A-2

12. usleep suspend execution for microsecond intervals

13. echo echo string

14. sed stream editor

15. awk pattern-directed scanning and processing language

16. expand converts all tabs to spaces

17. tail print the last 10 lines of each FILE to standard output.

18. tar the GNU version of the tar archiving utility

19. tr translate, squeeze, and/or delete characters

20. wc print byte, word, and line counts, count the number of bytes,
whitespace-separated words, and newlines in each given FILE, or standard input if
non are given or for a FILE of ‘-‘.

Network
1. arp manipulate the system ARP cache

2. ping ping to test network

3. route routing table manager

4. netstat display network status

5. ifconfig set network IP address

6. tftp IPV4 Trivial File Transfer Protocol client

7. telnet Connects the local host with a remote host, using the Telnet interface.

8. ftp file transfer protocol

9. ifdown, ifup bring a network interface up, or take a network interface down

10. ip show / manipulate routing, devices, policy routing and tunnels

11. tcpsvd TCP/IP service daemon

12. wget the non-interactive network downloader

Process
1. kill kill process

2. ps display now running process

3. fuser identify processes using files or sockets

4. killall sends a signal to all processes running any of the specified commands

5. nice, renice run a program with modified scheduling priority / alter priority of running
processes

6. pidof find the process ID of a running program

7. run-parts run scripts or programs in a directory

8. start-stop daemon start and stop system daemon programs

9. top display Linux tasks

Modules
1. insmod insert a module into the kernel

2. lsmod icely formats the contents of the /proc/ modules, showing what kernel modules
are currently loaded

3. modprobe intelligently adds or removes a module from the Linux kernel

4. rmmod remove module from kernel

W321/341 Linux System Commands

 A-3

Other
1. dmesg dump kernel log message

2. stty to set serial port

3. zcat dump .gz file context

4. free display system memory usage

5. date print or set the system date and time

6. env run a program in a modified environment

7. clear clear the terminal screen

8. reboot reboot / power off/on the server

9. halt halt the server

10. du estimate file space usage

11. gzip, gunzip compress or expand files

12. hostname show system’s host name

13. dirname convert a full pathname to just a path

14. expr evaluate arguments as an expression

15. false do nothing, returning a non-zero (false) exit status

16. true do nothing, successfully

17. fdisk partition table manipulator for Linux

18. hwclock a tool for accessing the Hardware Clock.

19. id print the user identity

20. klogd kernel log daemon

21. logger a shell command interface to the syslog system log module

22. md5sum compute and check MD5 message digest

23. mesg control write access to your terminal

24. mktemp make temporary file name

25. nohup no Hang Up

26. reset terminal initialization

27. sty change and print terminal line settings

28. syslogd Linux system logging utilities.

29. Uname print system information, print information about the machine and operating
system it is run on.

30. Uptime Tell how long the system has been running.

31. Xargs build and execute command lines from standard input

32. yes print the command line arguments, separated by spaces and followed by a
newline, forever until it is killed.

33. tee copy standard input to each FILE, and also to standard output.

Moxa Special Utilities
1. kversion show kernel version

2. upramdisk mount ramdisk

3. downramdisk unmount ramdisk

4. setinterface set /dev/ttyMn to RS232/RS485-2WIRES/RS422/ RS485-4WIRES

5. setkey set the software encryption key

6. upgradehfm upgrade firmware utility

http://linux.die.net/man/3/syslog

	1. Introduction
	Overview
	Software Architecture
	Journaling Flash File System (JFFS2)
	Software Package

	2. Getting Started
	Accessing the W321/341 Using a PC
	Serial Console
	SSH Console
	Windows Users
	Linux Users

	Configuring the Ethernet Interface
	Modifying Network Settings with the Serial Console
	Temporarily Modifying Networking Configurations

	Configuring the WLAN
	Using WPA_SUPPLICANT to configure WPA2
	Connecto to an AP via WEP shared key authentication
	Connecting to an AP via WPA/WPA2 PSK authentication
	Configuring STA for Ad-Hoc Mode Using WEP
	Configuring STA for Ad-Hoc Mode Using WPA-none PSK Authentication
	Enabling wpa_cli to interact with wpa_supplicant
	Scanning AP and checking results
	Adding WEP setting into configuration file
	Adding WPA/WPA2 Settings into the Configuration File

	SD Slot and USB for Storage Expansion
	Test Program—Developing Hello.c
	Installing the Tool Chain (Linux)
	Checking the Flash Memory Space
	Compiling Hello.c
	Uploading and Running the “Hello” Program

	Developing Your First Application
	Testing Environment
	Compiling tcps2.c
	Uploading and Running the “tcps2-release” Program
	Testing Procedure Summary

	3. Managing Embedded Linux
	System Version Information
	System Image Backup
	Upgrading the Firmware
	Loading Factory Defaults

	Enabling and Disabling Daemons
	Setting the Run-Level
	Adjusting the System Time
	Setting the Time Manually
	NTP Client
	Updating the Time Automatically

	Cron—Daemon to Execute Scheduled Commands
	Connecting Storage Peripherals

	4. Managing Communications
	FTP
	SFTP
	DNS
	IPTABLES
	Observe and erase chain rules
	Define policy for chain rules
	Append or delete rules

	NAT
	NAT Example
	Enabling NAT at Bootup

	Dial-up Service—PPP
	Example 1: Connecting to a PPP server over a simple dial-up connection
	Example 2: Connecting to a PPP server over a hard-wired link
	How to check the connection
	Setting up a Machine for Incoming PPP Connections

	PPPoE
	NFS (Network File System)
	Setting up the W321/341 as an NFS Client

	SNMP
	OpenVPN
	Setup 1: Ethernet Bridging for Private Networks on Different Subnets
	Setup 2: Ethernet Bridging for Private Networks on the Same Subnet
	Setup 3: Routed IP

	5. Tool Chains for ApplicationDevelopment
	Linux Tool Chain
	Steps for Installing the Linux Tool Chain
	Compilation for Applications

	6. Programmer's Guide
	Flash Memory Map
	Device API
	RTC (Real Time Clock)
	Buzzer
	WDT (Watch Dog Timer)
	Digital Input/Output(W321 only)
	Application Programming Interface
	DI/DO Program Makefile Example

	UART
	Example to set the baudrate
	Example to get the baudrate
	Baudrate inaccuracy
	Special Note

	Relay Output (W341 only)
	Example

	7. Software Lock
	A. System Commands
	Linux normal command utility collection
	File Manager
	Editor
	Network
	Process
	Modules
	Other
	Moxa Special Utilities

