

MX-NOS Rail Version V1 User Manual

Version 1.0

September 2024

Table of Contents

Overview	8
Introduction	9
About MX-NOS and MX-NOS Rail Version	10
What's in This Document	12
Supported Series and Firmware Versions	13
Quick Start	14
Using a Web Browser to Configure the Industrial Ethernet S	Switch 15
UI Reference	17
UI Reference Overview	18
The MX-NOS Rail Version User Interface	19
Options Menu	20
Change Mode	20
Disable/Enable Auto Save	20
Locator	21
Reboot	22
Reset to Default Settings	22
Save Custom Default	22
Log Out	23
Device Summary	24
System Information	24
Panel Status	25
Panel View	26
Event Summary (Last 3 days)	27
CPU Usage History (%)	27
System	29

S	ystem Management	.29
	Information Settings	29
	Firmware Upgrade	30
	Configuration Backup and Restore	34
Α	ccount Management	.48
	User Accounts	48
	Online Accounts	54
	Password Policy	55
М	lanagement Interface	.57
	User Interface	57
	Hardware Interfaces	60
	Configuring Simple Network Management Protocol	61
Т	ime	.67
	About System Time	67
	NTP Server	73
	Configuring NTP Server	74
Prov	isioning	76
Α	uto Configuration	.76
	How Auto Configuration Works	76
	Using Auto Configuration for Single Device Deployment	78
	Deploying Multiple Devices Using Auto Configuration	80
	Auto Configuration	90
Port		93
P	ort Interface	.93
	Port Settings	93
	Linkup Delay	97
Li	ink Aggregation	.99

	Link Aggregation Settings	100
	PoE	106
	PoE Settings	106
Lay	/er 2 Switching	121
	VLAN	121
	Assigning VLANs to Ports	121
	Creating VLANs	122
	VLANs in Depth	123
	VLAN Settings	126
	GARP	132
	GARP Settings	132
	MAC	134
	Static Unicast	134
	MAC Address Table	136
	QoS	138
	How each QoS feature works	138
	QoS	139
	Multicast	171
	How Multicast Works	172
	Multicast	173
ΙP	Configuration	190
	IP Configuration	190
	IP Status	190
	IP Settings - Manual	191
	IP Settings - DHCP	192
Red	dundancy	194
	Laver 2 Pedundancy	104

	Selecting a Layer 2 Redundancy Protocol	194
	About Spanning Tree	197
	About Turbo Ring v2	222
	About MRP (Media Redundancy Protocol)	237
Netwo	ork Service	244
Cor	nfiguring DHCP Server Functions	244
	Introduction to DHCP	244
	Overview of DHCP Server Configuration	244
	Configuring Dynamic IP Address Assignment (DHCP Server Pool)	245
	Reserving IP Addresses for Specific Devices (MAC-based IP Assignment)	247
	Configuring Port-based IP Assignment	249
	DHCP Server	252
Cor	nfiguring DHCP Relay Agent	262
	About DHCP Relay Agents	262
	Configuring DHCP Relay Agent	263
	Configuring Option 82	264
	DHCP Relay Agent	265
Abo	out DNS Server	270
	Example: Configuring DNS Server for a Consist Door	275
	DNS Server	276
Securi	ty	283
Dev	vice Security	283
	Login Policy	283
	About Trusted Access	285
	SSH & SSL	288
Net	work Security	291
	IEEE 802 1V	202

	About MAC Authentication Bypass	305
	Port Security	313
	Traffic Storm Control	323
	Access Control List	326
	Network Loop Protection	339
	Binding Database	342
	DHCP Snooping	348
	IP Source Guard	352
	Dynamic ARP Inspection	356
Au	thentication	359
	Login Authentication	360
	RADIUS	362
	TACACS+	364
Diagn	ostics 3	367
Sy	stem Status	367
	Resource Utilization	36 <i>7</i>
Ne	twork Status	370
	Network Statistics	370
	LLDP	3 <i>74</i>
Too	ols	383
	Port Mirroring	3 <i>83</i>
	Ping	403
Eve	ent Logs and Notifications	403
	Event Logs2	404
	Event Notifications	409
	Syslog	414
	SNMP Trap/Inform	418

Email Settings	424
Appendix Topics	426
Account Privileges List	427
System	427
Port	428
Layer 2 Switching	428
IP Configuration	429
Redundancy	429
Layer 2 Redundancy	429
Network Service	430
Security	430
Diagnostics	431
Configuration Types	433
Event Log Descriptions	434
SNMP MIB Files	438
The structure of the Moxa MIB group package	438
Standard MIBs Installation Order	441
MIB tree	442
Severity Level List	445

Chapter 1

Overview

Introduction

Welcome to the MX-NOS Rail Version user manual. This comprehensive guide is designed to help you understand and navigate the UI features, technical concepts, and tasks you may encounter while using your device. Our goal is to simplify your experience and make the setup process easier.

About MX-NOS and MX-NOS Rail Version

MX-NOS

Moxa's next-generation Ethernet switches are powered by MX-NOS, a tailored firmware platform that seamlessly integrates with your Moxa devices. This unlocks their full potential, transforming your switches into powerful tools with consistent functionality and a user-friendly interface.

How does Moxa achieve this? By providing a platform-based management OS, Moxa offers several key advantages, including:

- Streamlined software management with regular updates: Moxa keeps your switches up-to-date with the latest technologies throughout their lifetime.
 Continuous bug fixes and vulnerability synchronization ensure high software quality and improved network security.
- **Robust security by design**: Moxa adheres to IEC 62443-4-1 for software development lifecycles. As a result, MX-NOS provides a solid foundation for the switches running on it to build security features based on IEC 62443-4-2.
- Consistent user experience: MX-NOS features an intuitive UI that provides a
 consistent user experience across different browsing devices, minimizing training
 time and maximizing efficiency.

MX-NOS is more than just a firmware platform; it's a significant leap towards a superior user experience.

MX-NOS Rail Version

Built on the robust foundation of MX-NOS, MX-NOS Rail Version caters specifically to the unique needs and demands of onboard railway networks. It addresses the growing demand for reliable communications and faster response times.

MX-NOS Rail Version offers a comprehensive suite of features that prioritize unwavering reliability to achieve smooth operation of critical railway systems such as TCMS. Furthermore, MX-NOS Rail Version simplifies network design, installation, and maintenance with features designed for onboard networks. This significantly reduces deployment time and ongoing management costs, which translates to a streamlined workflow for railway personnel, allowing them to focus on core operational tasks.

In essence, MX-NOS Rail Version represents a game-changer for onboard railway communications. Its innovative approach streamlines network management and fosters a more agile and responsive railway ecosystem.

What's in This Document

This document includes the following sections:

- Overview: This section introduces this document and how to use it.
- **Quick Start**: This section tells you how to connect to your device so you can start using and configuring it.
- **UI Reference**: This section goes through the web user interface (UI) of your device to help you quickly understand what settings are available. This section also shows you the valid ranges and defaults for settings, and any limitations there may be when configuring your device.
- Appendix: This section provides additional reference information for your device.

Supported Series and Firmware Versions

Moxa Switch Series	Firmware Version
TN-4500B Series	v1.0

✓ Note

We are continually improving and developing our software. Check regularly to see if there is an updated version of the software that provides you with additional benefits. You can find information and software downloads on the Moxa product pages at https://www.moxa.com/en/support/product-support/software-and-documentation.

Chapter 2

Quick Start

Using a Web Browser to Configure the Industrial Ethernet Switch

The device's web interface provides a convenient way to modify the switch's configuration and access the built-in monitoring and network administration functions.

When using the device's web interface, we recommend using the following browsers and versions. Please note that Internet Explorer (IE) is not supported.

- Chrome: 2 most recent versions
- Firefox: Latest version and the Extended Support Release (ESR)
- Edge: 2 most recent major versions
- Safari: 2 most recent major versions
- iOS: 2 most recent major versions
- Android: 2 most recent major versions

Perform the following steps to access the device's web interface:

- Make sure your PC host is connected to your device's LAN port, and is on the same subnet as your device.
- 2. Open a web browser and type the device's LAN IP address (**192.168.127.254** by default) into the address bar and press Enter.

3. The web login page will open. Enter the username (**admin** or **user**) and password (the same as the Console password) and click **LOG IN** to continue.

✓ Note

The default username is admin and the default password is moxa. We strongly recommend changing the password as soon as possible to ensure the security of your device.

You may need to wait a few moments for the web interface to appear.

4. After successfully connecting to the switch, the **Device Summary** screen will automatically appear. Use the menu tree on the left side of the window to open the function pages to access each of the switch's functions.

Chapter 3

UI Reference

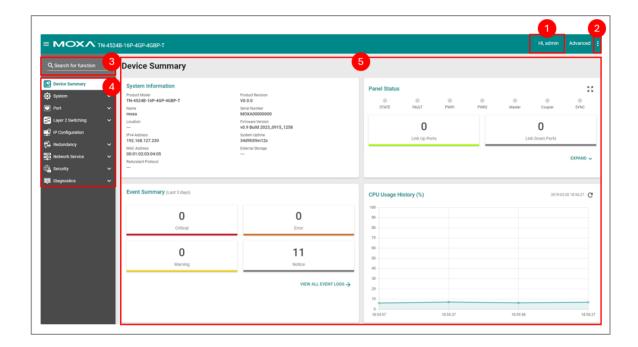
UI Reference Overview

This section provides you with a quick reference to the different settings and options of your device.

To help you understand how to use the user interface, the following sections are included:

- The MX-NOS Rail Version User Interface
- · Options Menu

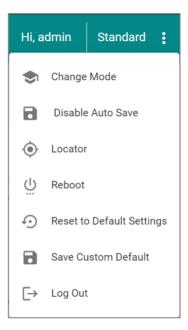
The rest of this section follows the order of the menu areas in the user interface:


- Device Summary
- System
- Provisioning
- Port
- Layer 2 Switching
- Network Interface
- IP Configuration
- Redundancy
- Network Service
- Security
- Diagnostics

The MX-NOS Rail Version User Interface

Moxa's managed switches offer a user-friendly web interface for easy configuration, reducing system maintenance and configuration effort.

This section describes how the web interface is laid out to make it easier for you to find and access the different function pages.


Here is an overview of the MX-NOS Rail Version user interface:

- 1. **Login Name:** Shows the name of the currently logged in user.
- 2. Configuration Mode: Shows which configuration mode is being used:
 - Standard Mode: Some features and parameters will be hidden to make configuration simpler (enabled by default).
 - Advanced Mode: More features and parameters will be shown to allow for more detailed configuration.
- 3. **Search Bar:** Type in a function name to filter to the function menu.
- 4. **Function Menu:** All functions of the switch are shown here. Click the function you want to view or configure.
- 5. **Device Summary:** Shows device information and settings for the selected function.

Options Menu

Clicking the **Options (:)** icon in the upper-right corner of the page will open the options menu.

Change Mode

There are two configuration modes available for users: **Standard Mode** and **Advanced Mode**.

- In **Standard Mode**, some of the features/parameters will be hidden to make it easier to perform configurations. This is the default setting.
- In **Advanced Mode**, advanced features/parameters will be available for users to adjust these settings.

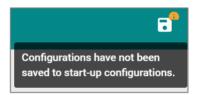
To switch between modes, click the **Options (** :) icon in the upper-right corner of the page, and select **Change Mode**.

Disable/Enable Auto Save

Auto Save allows users to save all changes to the device's running configuration to the startup configuration immediately and automatically, so all changes will persist even after

the device has restarted. Refer to <u>Configuration Types</u> for more information about the different configurations your device uses.

✓ Note


Auto Save is enabled by default.

To disable Auto Save, click the **Options (** :) icon in the upper-right corner of the page, and select **Disable Auto Save**.

To save configuration changes to the startup configuration, click the **Save** () icon.

✓ Note

When auto save is disabled, if changes have not been saved and the device is restarted, all changes will be lost and the device will revert to its startup configuration.

To re-enable Auto Save, click the **Options** (;) icon in the upper-right corner of the page, and select **Enable Auto Save**.

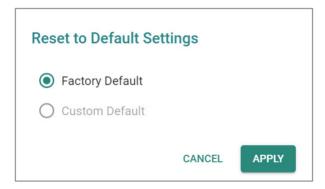
Locator

The Locator feature will cause the LED indicators on the device to flash, making it easier to locate and identify the specific device when installed at a field site.

To trigger the device locator, click the **Options** (i) icon in the upper-right corner of the page, and select **Locator**. Select how long in seconds the LEDs should flash for, then click **LOCATE**.

Reboot

To manually reboot the device, click the **Options** (i) icon in the upper-right corner of the page, and select **Reboot**.


Reset to Default Settings

To rest the device to its default settings, click the **Options** (:) icon in the upper-right corner of the page, and select **Reset to Default Settings**.

Select whether to reset to **Factory Default** settings, or the saved **Custom Default** settings, then click **APPLY**.

Refer to Save Custom Default for more information about custom default settings.

Note
Custom Default can only be selected if custom default settings have been saved on the device.

Save Custom Default

You can save a custom default configuration for your device. This allows you to reset the device to a trusted configuration without uploading a configuration file to restore from. Refer to Reset to Default Settings for more information.

Note

- Ensure that the current startup configuration works as expected and that the user account settings are correct before saving the configuration as a custom default.
- The configuration name can be modified on the Config Backup and Restore page. We recommend including the configuration name for better file differentiation. Please note that each configuration must be unique and not repetitive.
- Each device can only have one set of custom default settings.
- Custom default settings can only save and restore configuration settings. They do not include other uploaded files, such as SSL certificate files, SSH keys, etc.
- Refer to Configuration Types for more information about the different configurations your device uses.

To save the current startup configuration as a custom default, click the **Options (:)** icon in the upper-right corner of the page, and select **Save Custom Default**.

Log Out

To log out of the device, click the **Options (** ;) icon in the upper-right corner of the page, and select **Log Out**.

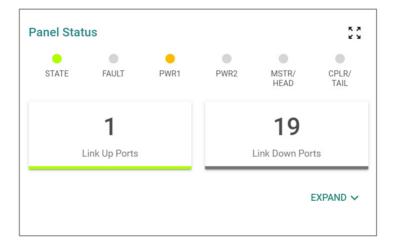
Device Summary

Menu Path: Device Summary

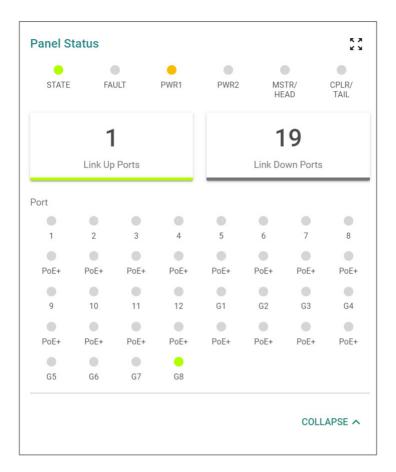
This page lets you see the current status of your device through a variety of display panels.

System Information

This display shows basic information about your device and its current status.


Product Model	Product Revision
N-4516B-T	V1.0.0
lame	Serial Number
noxa	MOXA00000000
ocation	Firmware Version
	v1.0 Build 2024_0801_1211
Pv4 Address	System Uptime
92.168.127.253	39d6h39m30s
MAC Address	External Storage
00:00:00:00:00	
Redundant Protocol	
STP/RSTP	

UI Setting	Description
Product Model	Shows the product model of the device.
Name	Shows the name of the device. Refer to <u>System > System Management > Information Settings</u> for more information.
Location	Shows the location of the device. Refer to <u>System > System Management > Information Settings</u> for more information.
IPv4 Address	Shows the IPv4 address of the device.
MAC Address	Shows the MAC address of your device.

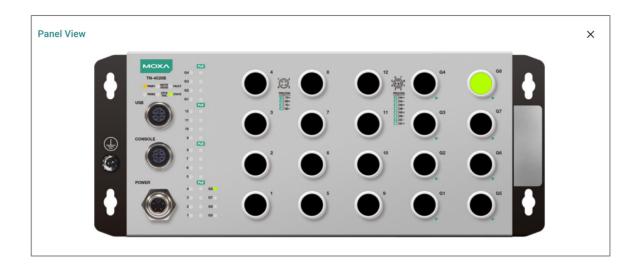

UI Setting	Description
Redundant Protocol	Shows the current redundancy protocol for this switch.
Product Revision	Shows the product revision of the device.
Serial Number	Shows the serial number of your device.
Firmware Version	Shows the firmware version of your device.
System Uptime	Shows the amount of time your device has been continuously running for.
External Storage	Shows the external storage device currently connected to your device, if applicable.

Panel Status

This display reflects the current status of the physical LEDs on your device, and shows how many ports currently have a link up or link down status. Grey is used to indicate an LED is off. For more information about status LEDs and their behavior, please refer to the QIG.

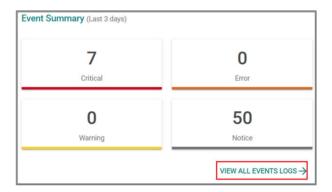
Click **EXPAND** to view more detailed information, or click **COLLAPSE** to return to the compact view.

Panel View

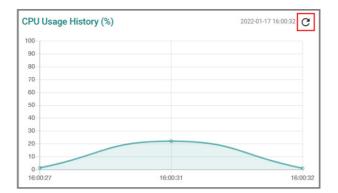

By clicking the **Expand** $\binom{\kappa \times \kappa}{\kappa \times \kappa}$ icon in **Panel Status**, you can see a visual representation of your device's ports.

Green ports have an active link. You can move your cursor over a port to show a mouseover with more information about that port.

Click the Close (\times) icon to close the **Panel View** and show **Panel Status** again.


✓ Note

The Panel View figure may vary depending on the device and the modules installed in it.


Event Summary (Last 3 days)

This display shows an event summary for the past three days. Click **VIEW ALL EVENT LOGS** to go to the Diagnostics > Event Logs and Notifications > Event Logs page to view more detailed information.

CPU Usage History (%)

This display shows the device's CPU usage shown as a percentage over time. Click the **Refresh** ($^{\mathbb{C}}$) icon to refresh the graph.

System

Menu Path: System

This section lets you adjust various system settings.

This section includes these pages:

- System Management
- Account Management
- Management Interface
- Time

System Management

Menu Path: System > System Management

This section lets you adjust various system management related settings.


This section includes these pages:

- Information Settings
- Firmware Upgrade
- Config Backup and Restore

Information Settings

Menu Path: System > System Management > Information Settings

This page lets you add additional information about the device to make it easier to identify different switches that are connected to your network. When finished, click APPLY to save your changes.

UI Setting	Description	Valid Range	Default Value
Device Name	Specify a name for the device. This helps you differentiate between the roles or applications of different devices.	1 to 64 characters	moxa
Location	Specify a location for the device. This helps you differentiate between different locations or sites for different devices.	0 to 255 characters	N/A
Description	Specify a description for the device. This helps you keep a more detailed description of the device.	0 to 255 characters	N/A
Contact Information	Specify the contact information of the person in charge of the device. You can enter information such as an email address or telephone number for a person to contact if problems occur.	0 to 255 characters	N/A

Firmware Upgrade

Menu Path: System > System Management > Firmware Upgrade

You can upgrade the firmware through the following methods:

- Local
- TFTP
- SFTP
- USB

✓ Note

It is highly recommended that you back up your device's configuration before upgrading the firmware. Refer to System > System Management > Configuration Backup and Restore for more information.

✓ Note

If it is necessary to verify the integrity and signature of the application when the system is running, the administrator can use the show integrity check CLI command.

▲ Warning

Upgrading the firmware should be only be done by qualified personnel, as it is possible to render the device inoperable if the upgrade is not done properly. If you are not familiar with the process, please request the assistance of qualified personnel. You can also consult with Moxa support and we will provide you with the necessary assistance.

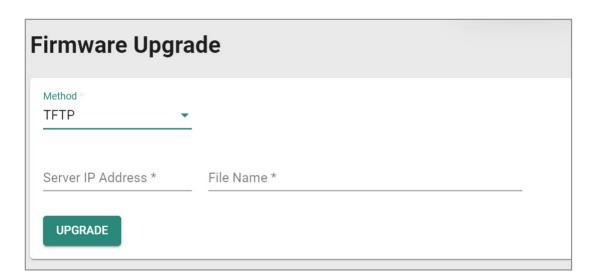
Before performing a firmware upgrade, make sure you take the following precautions:

- Back up your configuration before upgrading the firmware
- Ensure that the device has power during the entire process
- Ensure that your computer stays connected to the device you are upgrading the firmware on
- Make sure the connection to the firmware source is not interrupted during the upgrade process

Firmware Upgrade - Local

If you select **Local** as your **Method**, these settings will appear. The Local method lets you upload firmware directly from local storage on the host device.

✓ Note


Before performing a firmware upgrade, download the updated firmware (*.rom) file first from Moxa's website (www.moxa.com).

UI Setting	Description	Valid Range	Default Value
Select File	Select the new firmware file (*.rom) to use from your computer.	Select a file from your computer	N/A

Firmware Upgrade - TFTP

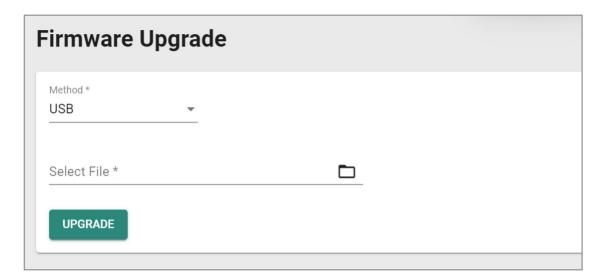
If you select **TFTP** as your **Method**, these settings will appear. The TFTP method lets you upload and install firmware stored on a remote TFTP server.

UI Setting	Description	Valid Range	Default Value
Server IP Address	Specify the IP address of the TFTP server where the new firmware file (*.rom) is located.	Valid IP address	N/A

UI Setting	Description	Valid Range	Default Value
File Name	Specify the filename of the new firmware.	File name	N/A

Firmware Upgrade - SFTP

If you select **SFTP** as your **Method**, these settings will appear. The SFTP method lets you upload and install firmware stored on a remote SFTP server.


UI Setting	Description	Valid Range	Default Value
Server IP Address	Specify the IP address of the SFTP server where the new firmware file (*.rom) is located.	Valid IP address	N/A
File Name	Specify the filename of the new firmware.	File name can only contain A-Z, a-z, 0-9 or the symbols().	N/A
Account	Enter the SFTP server account name to use to connect to the SFTP server.	Account	N/A
Password	Enter the SFTP server account password to use to connect to the SFTP server.	Password	N/A

Firmware Upgrade - USB

If you select **USB** as your **Method**, these settings will appear. The USB method allows you to upgrade the firmware via Moxa's USB-based ABC-02 configuration tool.

Note

To use this feature, USB Function must be enabled in System > Management Interface > Hardware Interface.

UI Setting	Description	Valid Range	Default Value
Select File	Select the new firmware file (*.rom) to use from your USB device.	Select a file from the USB device	N/A

Configuration Backup and Restore

Menu Path: System > System Management > Configuration Backup and Restore

This page helps you back up and restore your device configuration.

This page includes these tabs:

- Backup
- Restore
- File Encryption
- File Signature

Configuration Backup and Restore - Backup

Menu Path: System > System Management > Configuration Backup and Restore - Backup

This section lets you create a backup of the current device configuration.

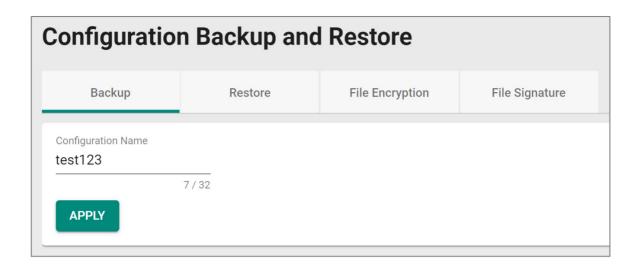
There are multiple methods of backing up the device configuration:

- Local
- TFTP
- SFTP
- USB

Note

For security reasons, we strongly recommend that you back up the system configuration to a secure storage location periodically.

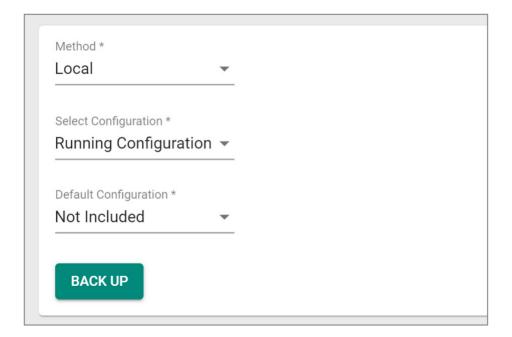
Note


To export your custom settings, select "Startup Configuration" when exporting the configuration. Since saving custom default will also copy the settings into startup configuration.

Configuration Name

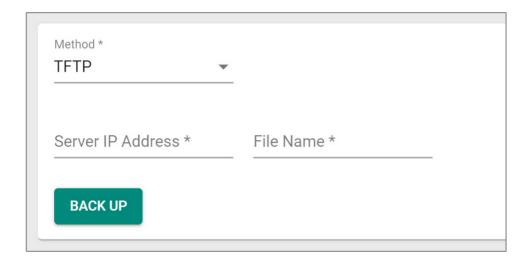
You can specify a configuration name to easily identify the configuration during backup or restore.

Note


The configuration name alone cannot ensure the integrity and consistency of the configuration file. You can have multiple backups with the same configuration name, but the settings in the configuration files may be different.

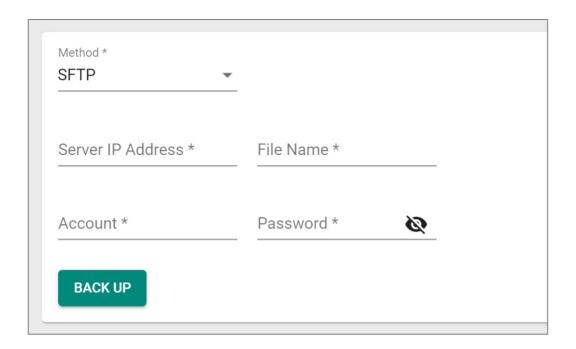
UI Setting	Description	Valid Range	Default Value
Configuration Name	Specify the configuration name to use for the backup.	1 to 32 characters	moxa

Configuration Backup - Local


If you select **Local** as your **Method**, these settings will appear. The Local method will export the configuration backup file to the local host.

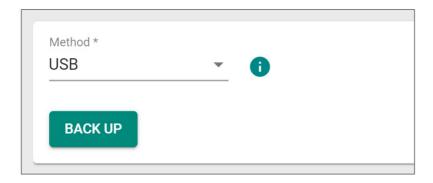
UI Setting	Description	Valid Range	Default Value
Select Configuration	Choose to back up the runnning cofiguration or the startup configuration of the switch.	Running Configuration / Startup Configuration	Running Configuration
Default Configuration	Choose to back up the configuration without or with default settings.	Not Included / Included	Not Included

Configuration Backup - TFTP


If you select **TFTP** as your **Method**, these settings will appear. The TFTP method lets you upload the configuration backup file to a remote TFTP server.

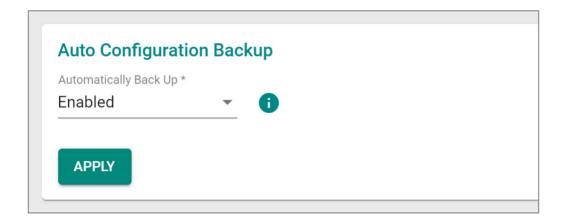
UI Setting	Description	Valid Range	Default Value
Server IP Address	Specify the IP address of the TFTP server to upload the backup to.	Valid IP address	N/A
File Name	Specify a filename for the backup.	N/A	N/A

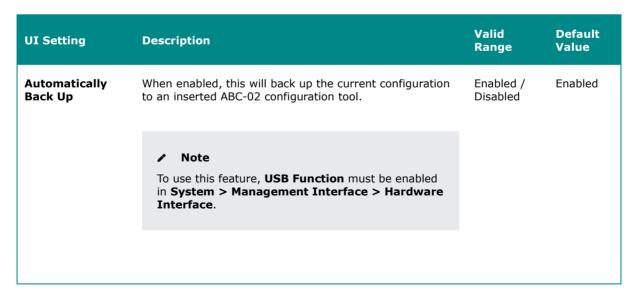
Configuration Backup - SFTP


If you select **SFTP** as your **Method**, these settings will appear. The SFTP method lets you upload the configuration backup file to a remote SFTP server.

UI Setting	Description	Valid Range	Default Value
Server IP Address	Specify the IP address of the SFTP server to upload the backup to.	Valid IP address	N/A
File Name	Specify a filename for the backup.		N/A
Account	Enter the SFTP server account name to use to connect to the SFTP server.		N/A
Password	Enter the SFTP server account password to use to connect to the SFTP server.		N/A

Configuration Backup - USB


If you select **USB** as your **Method**, these settings will appear. The USB method allows you to export the configuration backup file to a Moxa ABC-02 configuration tool connected to the device. Insert a Moxa ABC-02 configuration tool into the USB port of the switch, then click **BACK UP** to back up the system configuration file.



Auto Configuration Backup

Auto configuration backup lets you automatically back up the configuration file to an ABC-02 configuration tool whenever the configuration is changed.

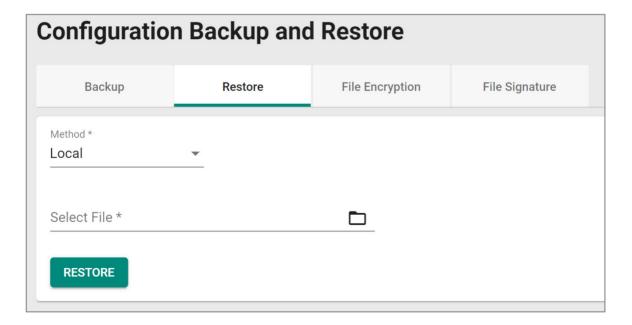
To enable automatic backup, select **Enabled** from the drop-down list, then click **APPLY**.

Configuration Backup and Restore - Restore

Menu Path: System > System Management > Configuration Backup and Restore - Restore

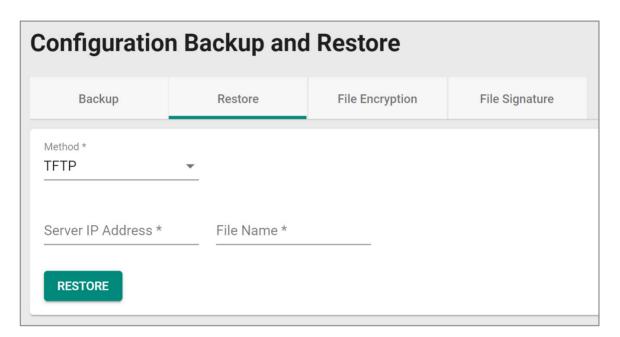
This page lets you restore a previously backed up configuration.

There are multiple methods of restoring the device configuration:


- Local
- TFTP
- SFTP
- USB

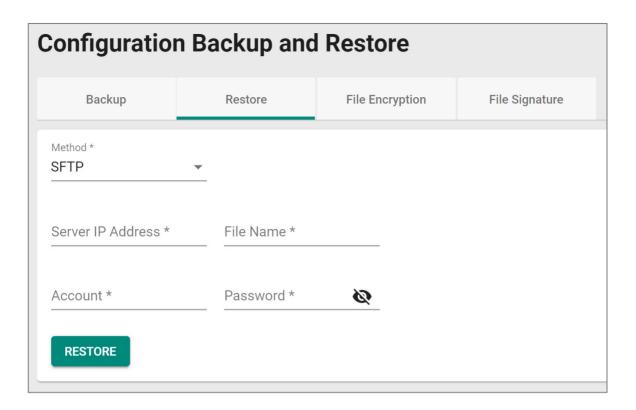
To import your custom settings, select the "Restore" option. Choose the previously exported custom configuration file you wish to apply.

Configuration Restore - Local


If you select **Local** as your **Method**, these settings will appear. The Local method will restore from a configuration file on the local host.

UI Setting	Description	Valid Range	Default Value
Select File	Select the configuration file to use from your computer.	Select a file from your computer	N/A

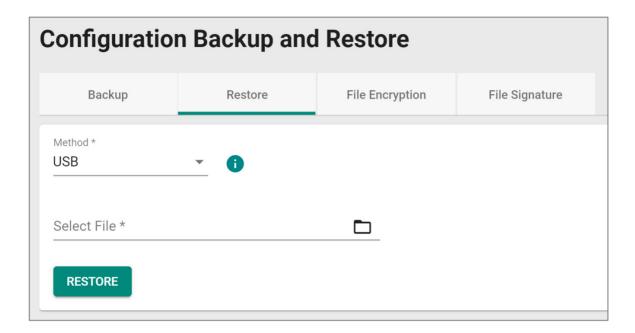
Configuration Restore - TFTP


If you select **TFTP** as your **Method**, these settings will appear. The TFTP method lets you download and install a configuration stored on a remote TFTP server.

UI Setting	Description	Valid Range	Default Value
Server IP Address	Specify the IP address of the TFTP server.	Valid IP address	N/A
File Name	Specify the file name of the configuration file to restore from.	Up to 54 characters, including file extension	N/A

Configuration Restore - SFTP

If you select **SFTP** as your **Method**, these settings will appear. The SFTP method lets you download and install a configuration stored on a remote SFTP server.

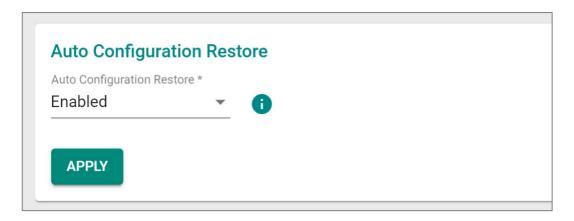

UI Setting	Description	Valid Range	Default Value
Server IP Address	Specify the IP address of the SFTP server.	Valid IP address	N/A
File Name	Specify the file name of the configuration file to restore from.	File name can only contain A-Z, a-z, 0-9 and special charater().	N/A
Account	Enter the SFTP server account name to use to connect to the SFTP server.	Account	N/A
Password	Enter the SFTP server account password to use to connect to the SFTP server.	Password	N/A

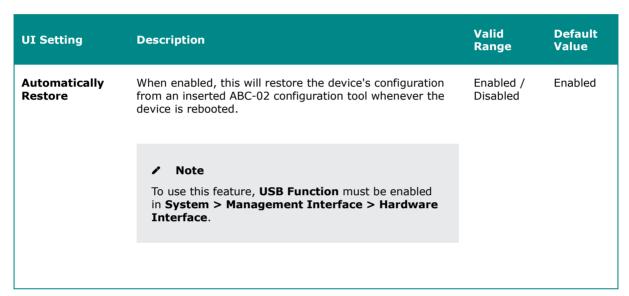
Configuration Restore - USB

If you select USB as your **Method**, these settings will appear. The USB method allows you to restore the configuration from a file via Moxa's USB-based ABC-02 configuration tool.

✓ Note

To use this feature, USB Function must be enabled in System > Management Interface > Hardware Interface.

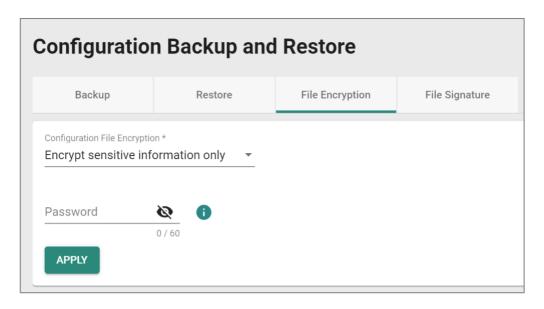



UI Setting	Description	Valid Range	Default Value
Select File	Select the configuration file to use from your USB device.	Select a file from the USB device	N/A

Auto Configuration Restore

Auto configuration restore lets you restore the device's configuration from an inserted ABC-02 configuration tool whenever the device is rebooted.

To enable automatic restore, select **Enabled** from the drop-down list, then click **APPLY**.



Configuration Backup and Restore - File Encryption

Menu Path: System > System Management > Configuration Backup and Restore - File Encryption

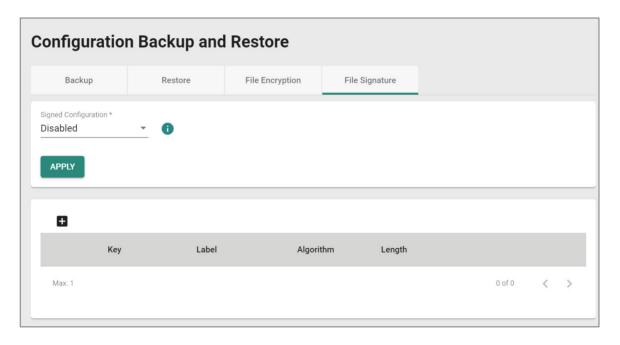
This page lets you configure data encryption settings for exported configuration files.

UI Setting	Description	Valid Range	Default Value
Configuration File Encryption	Select which file encryption mode to use. Encrypt sensitive information only: Only sensitive information will be encrypted in the configuration file. Encrypt the entire file: The entire configuration file will be encrypted.	Encrypt sensitive information only / Encrypt whole file	Encrypt sensitive information only
	Note Sensitive information includes passwords used for authentication and the encryption key used to encrypt data.		
Encryption Key	Specify an encryption key to use for configuration files. Note If no encryption key is specified, then the Moxa encryption key will be used.	0 to 60 characters	Blank (the Moxa encryption key will be used)

File Signature

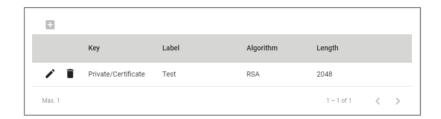
Menu Path: System > System Management > Configuration Backup and Restore - File Signature

This page lets you enable use of file signatures to help ensure the file integrity and authenticity of your configuration files.


Note

Before enabling file signatures, you will need to add a private/public key to the table on this page.

C Limitations


You can add up to 1 key to use for file signatures.

Signed Configuration

UI Setting	Description	Valid Range	Default Value
Signed Configuration	Enables or disables the use of a digital signature to check the integrity of configuration files. Note To enable this feature, a private/public key must be installed first. Refer to Adding a Custom Key for more information.	Enabled / Disabled	Disabled

File Signature Key List

UI Setting	Description
Key	Shows whether the key is a public or private key.
Label	Shows the label used to help identify the key.
Algorithm	Shows the algorithm used for the key, such as RSA or ECDSA.
Length	Shows the length of the key in bits.

Adding a Custom Key

Menu Path: System > System Management > Configuration Backup and Restore - File Signature

Clicking the Add () icon on the System > System Management > Configuration Backup and Restore - File Signature page will open this dialog box. This dialog lets you add a custom key to use for file signatures.

Click **CREATE** to save your changes and add the new key.

UI Setting	Description	Valid Range	Default Value
Label	Specify a label to help describe the certificate and the key.	0 to 16 characters	N/A
Certificate	Select a certificate file to import from your computer.	Select a certificate file from your computer	N/A
Key	Select a key file to import from your computer.	Select a key file from your computer	N/A

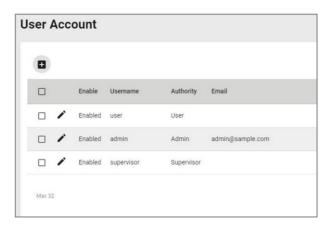
Account Management

Menu Path: System > Account Management

This section lets you manage user accounts for your device. You can enable different accounts with different roles to facilitate convenient management and safe access.

This section includes these pages:

- User Accounts
- Online Accounts
- Password Policy

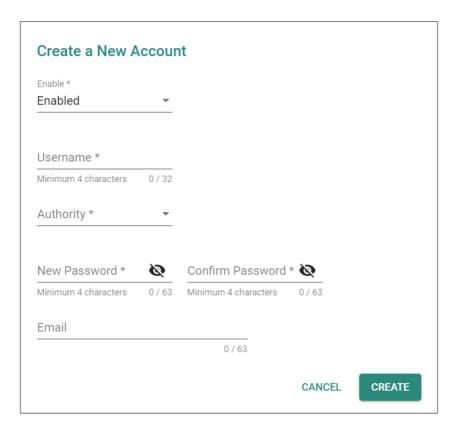

User Accounts

Menu Path: System > Account Management > User Accounts

This page lets you manage the user accounts for your device.

✓ Note

By default, there is only one account: admin

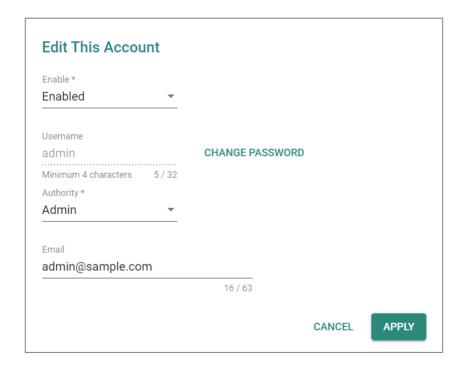


UI Setting	Description
Enable	Shows whether the account is enabled or disabled.
Username	Shows the username of the account.
Authority	Shows the authority level of the account.
Email	Shows the email address of the account.

User Accounts - Create a New Account

Menu Path: System > Account Management > User Accounts

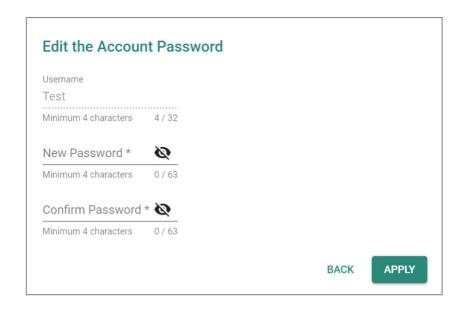
Clicking the Add () icon on the System > Account Management > User Accounts page will open this dialog box. This dialog lets you create a new user account. Click CREATE to save your changes and add the new account.


UI Setting	Description	Valid Range	Default Value
Enable	Enable or disable the user account.	Enabled / Disabled	Enabled
Username	Specify a username for this account.	4 to 32 characters	N/A
Authority	Specify the authority level of the account. Refer to the <u>Account Privileges List</u> for a list of what read/write access privileges are granted for the different authority levels.	Admin / Supervisor / User	N/A
	 Admin: This account has read/write access of all configuration parameters. 		
	 Supervisor: This account has read/write access for a limited set of configuration parameters. 		
	 User: This account can only view a limited set of configuration parameters. 		
	✓ Note In order to enhance security, we suggest you create a new account with the User authority.		

UI Setting	Description	Valid Range	Default Value
New Password	Specify the new password for this account.	4 to 63 characters, additional requirements are based on settings in System > Account Management > Password Policy	N/A
Confirm Password	Reenter the password to confirm.	4 to 63 characters, must match New Password	N/A
Email	Specify an email address for the account (optional).	Valid email address, 0 to 63 characters	N/A

User Accounts - Edit This Account

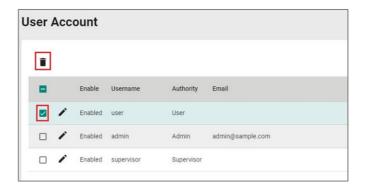
Menu Path: System > Account Management > User Accounts


Clicking the **Edit** () icon on the **System > Account Management > User Accounts** page will open this dialog box. This dialog lets you edit an existing user account. Click **APPLY** to save your changes.

UI Setting	Description	Valid Range	Default Value
Enable	Enable or disable the user account.	Enabled / Disabled	Enabled
Username	Shows the username of the account.	N/A	N/A
	Note The username cannot be edited after creating an account.		
Authority	Specify the authority level of the account. Refer to the Account Privileges List for a list of what read/write access privileges are granted for the different authority levels. • Admin: This account has read/write access of all configuration parameters. • Supervisor: This account has read/write access for a limited set of configuration parameters. • User: This account can only view a limited set of configuration parameters.	Admin / Supervisor / User	N/A
Change Password	Click CHANGE PASSWORD to change the account password. Refer to Edit the Account Password for more information.	N/A	N/A
Email	Specify an email address for the account (optional).	Valid email address, 0 to 63 characters	N/A

Edit the Account Password

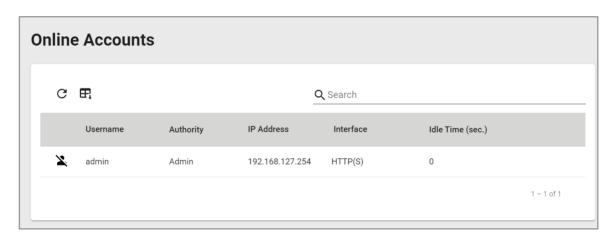
Clicking **CHANGE PASSWORD** in the **Edit This Account** dialog will open this dialog box. This dialog lets you change the password for an account. Click **APPLY** to save your changes.



UI Setting	Description	Valid Range	Default Value
Username	Shows the username of the account.	N/A	N/A
	Note The username cannot be edited after creating an account.		
New Password	Specify the new password for this account.	4 to 63 characters, additional requirements are based on settings in System > Account Management > Password Policy	N/A
Confirm Password	Reenter the password to confirm.	4 to 63 characters, must match New Password	N/A

User Accounts - Delete Account

Menu Path: System > Account Management > User Accounts


You can delete an account by using the checkboxes to select the entries you want to delete, then clicking the **Delete** ($\hat{\blacksquare}$) icon.

Online Accounts

Menu Path: System > Account Management > Online Accounts

This page lets you view a list of connected user and also lets you disconnect users.

UI Setting	Description
Username	Shows the username of the online account.
Authority	Shows the authority level of the online account.
IP Address	Shows the IP address of the online account.
Interface	Shows the interface that the online account is using.
Idle Time (sec.)	Show the idle time is seconds for the online account.

Online Accounts - Remove This Online Account

Menu Path: System > Account Management > Online Accounts

You can disconnect a user by clicking its **Remove (**\(^{\subsection}\)) icon. Click **REMOVE** to save your changes and remove the online account.

Password Policy

Menu Path: System > Account Management > Password Policy

This page lets you create a robust password policy to safeguard your system against hackers. By enforcing minimum length and complexity requirements, you can empower users to choose strong passwords that are difficult to crack. Additionally, you can set a maximum password lifetime to ensure regular password changes, further enhancing security. Click **APPLY** to save your changes.

✓ Note

To improve the security of your device and network, we recommend that you:

- Set the Minimum Length for passwords to 16
- Enable the Password complexity strength check and enable all the requirements
- Set a Maximum Password Lifetime to ensure that users change their password regularly

Minimum Passw	ord Length *
4	
4 - 63	
Password C	omplexity Strength Check
☐ Must cor	tain at least one digit (0-9)
☐ Must cor	tain at least one uppercase letter (A-Z)
■ Must cor	tain at least one lowercase letter (a-z)
☐ Must cor	tain at least one special character ({}[]() :;~!@#%^*+=
Maximum Passv	vord Lifetime *
0	
0 - 365	day

UI Setting	Description	Valid Range	Default Value
Minimum Password Length	Specify the minimum required password length.	4 to 16 characters	4
Password Complexity Strength Check	Select the complexity requirements that will apply to new passwords. Note New requirements will only apply when creating or changing a password. They will not apply to existing passwords.	Must contain at least one digit (0-9) / Must contain at least one uppercase letter (A-Z) / Must contain at least one lowercase letter (a-z) Must contain at least one special character ({}[]() :;~!@#%^*+=,.)	N/A
Maximum Password Lifetime	Specify how long in days passwords will be valid for. When the password expires, the system will require the user to change their password. If this is set to 0, passwords will not expire.	0 to 365 days	0

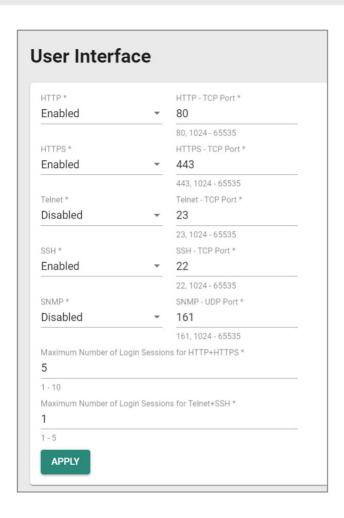
Management Interface

Menu Path: System > Management Interface

This section lets you configure the interfaces used to manage the device.

This section includes these pages:

- User Interface
- Hardware Interfaces
- SNMP


User Interface

Menu Path: System > Management Interface > User Interface

This page lets you configure which interfaces can be used to access the device. Click **APPLY** to save your changes.

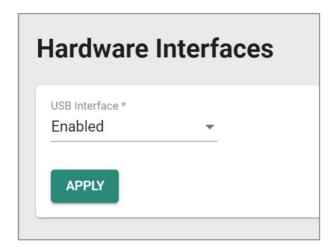
✓ Note

For security reasons, users should access the device using secure HTTPS and SSH interfaces.

UI Setting	Description	Valid Range	Default Value
НТТР	Enable or disable HTTP connections.	Enabled / Disabled	Enabled
HTTP - TCP Port	Specify the TCP port to use for HTTP connections.	80, 1024 to 65535	80

UI Setting	Description	Valid Range	Default Value
HTTPS	Enable or disable HTTPS connections.	Enabled / Disabled	Enabled
	The administrator can manually import a self-signed certificate (in .p12 format) for web server (HTTPS) services. However, the administrator should check the root certificate and validity of the signature before importing, according to the organization's security procedures and requirements. After importing a certificate, the administrator should check if the certificate has been revoked and if so, the certificate must be replaced. When a browser verifies the signature and accesses the device, it will return a subject name which the administrator can use to confirm the connected device is authorized.		
	Note The encryption algorithm of keys should be selected		
	based on internationally recognized and proven security practices and recommendations. The lifetime of certificates generated for web server (HTTPS) services should be short and in accordance with the organization's security procedures and requirements.		
HTTPS - TCP Port	Specify the TCP port to use for HTTPS connections.	443, 1024 to 65535	443
Telnet	Enable or disable Telnet connections.	Enabled / Disabled	Disabled
Telnet - TCP Port	Specify the TCP port to use for Telnet connections.	23, 1024 to 65535	23
SSH	Enable or disable SSH connections.	Enabled / Disabled	Enabled
SSH - TCP Port	Specify the TCP port to use for SSH connections.	22, 1024 to 65535	22
SNMP	Enable or disable SNMP connections.	Enabled / Disabled	Disabled
SNMP - UDP Port	Specify the UDP port to use for SNMP connections.	161, 1024 - 65535	161

UI Setting	Description	Valid Range	Default Value
Maximum Number of Login Sessions for HTTP+HTTPS	Specify the maximum combined number of users that can be logged in using HTTP and HTTPS.	1 to 10	5
Maximum Number of Login Sessions for Telnet+SSH	Specify the maximum combined number of users that can be logged in using Telnet and SSH.	1 to 5	1


Hardware Interfaces

Menu Path: System > Management Interface > Hardware Interfaces

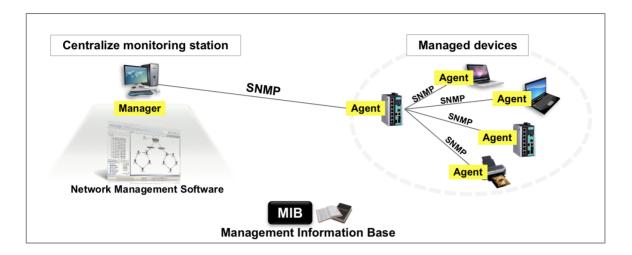
This page lets you enable or disable the USB interface on the device for use with an ABC-02 backup configurator tool.

Click **APPLY** to save your changes.

Hardware Interfaces Settings

UI Setting	Description	Valid Range	Default Value
USB Interface	Enable or disable the USB interface on the device.	Enabled / Disabled	Enabled

Configuring Simple Network Management Protocol


Simple Network Management Protocol (SNMP) be used to manage and monitor network devices.

It is an application-layer protocol that allows administrators to manage network performance, diagnose network problems, and gather information about network devices such as routers, switches, servers, printers, and other network equipment. SNMP works by using agents installed on network devices, which provide information to a central management system known as an SNMP manager. The manager sends requests to the agent to retrieve information about the device, such as CPU utilization, memory usage, network traffic, and other metrics.

About SNMP

An SNMP deployment consists of Managers, Agents, and Management Information Bases (MIBs).

- Management Information Base (MIB): A database of information about network devices and their performance metrics. The MIB is organized hierarchically and uses a tree-like structure.
- **SNMP Manager:** The central management system that monitors and manages network devices. It sends requests to the SNMP agents to gather information and configure network devices.
- **SNMP Agent:** A software module installed on network devices that provides information about the device to the SNMP manager. The agent responds to requests from the manager and sends notifications to the manager when certain events occur, such as a device failure.

SNMP agents expose management data on the managed systems as variables. The protocol also permits active management tasks, such as configuration changes, through remote modification of these variables. The variables accessible via SNMP are organized in hierarchies. SNMP itself does not define which variables a managed system should offer. Rather, SNMP uses an extensible design that allows applications to define their own hierarchies. These hierarchies are described as a management information base (MIB). MIBs describe the structure of the management data of a device subsystem; they use a hierarchical namespace containing object identifiers (OID). Each OID identifies a variable that can be read or set via SNMP.

Creating an SNMP Account

You must configure an SNMP account on each of your devices to manage them.

Some account settings are contingent on SNMP account settings. Protocol versions earlier than v3 do not support authentication or encryption, and require shared community keys. Go to **System** > **Management Interface** > **SNMP**, click **General**, and choose an SNMP Version. For insecure versions, also specify community strings.

✓ Note

SNMP versions earlier than v3 do not support authentication or encryption, and provide no security. It is strongly recommended to choose V3 Only unless compatibility absolutely requires earlier versions and security risks have been thoroughly evaluated.

To configure SNMP accounts:

1. Sign in to the device using administrator credentials.

- Go to System > Management Interface > SNMP, and then click SNMP Account.
- 3. Click **+**[Add].

The Create an SNMP Account screen appears.

4. Specify all of the following, and then click **Create**:

Option	Value
Username	Specify a username for the account with up to 32 characters
Authority	Choose from: Read/Write Read
Authentication Type	Choose from:
	Note Authentication requires SNMP v3.
Authentication Password	If an authentication type has been specified, specify a password for the account between 8 and 64 characters long.
Encryption Key	DisabledDESAES
	✓ Note Encryption requires SNMP v3.
Encryption Key	If an encryption method has been chosen, specify an Encryption Key between 8 and 64 characters long.

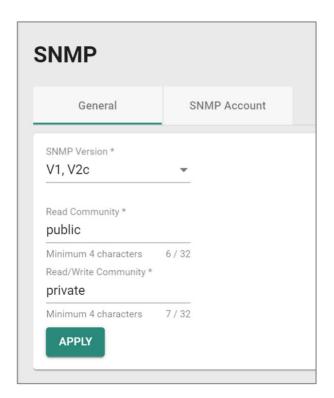
The account appears in the **SNMP Account** table.

You can Edit or Delete from the list by clicking the corredponing **[Edit]** or **[Delete]**.

SNMP

Menu Path: System > Management Interface > SNMP

This page lets you configure SNMP settings for your device.


This page includes these tabs:

- General
- SNMP Account

SNMP - General

Menu Path: System > Management Interface > SNMP - General

This page lets you specify the SNMP versions used to manage your device.

UI Setting	Description	Valid Range	Default Value
SNMP Version	Specify the SNMP protocol version used to manage your device. • V1, V2c, V3: Enable SNMP V1, V2c, and V3. • V1, V2c: Enable SNMP V1 and V2c only. • V3 only: Enable SNMP V3 only.	V1, V2c, V3 / V1, V2c / V3 only	V1, V2C
Read Community	Specify a string name for the SNMP Read Community.	4 to 32 characters	public
Read/Write Community	Specify a string name for the SNMP Read/Write Community.	4 to 32 characters	private

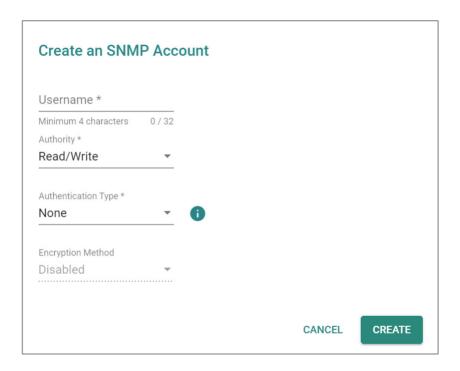
SNMP Account

Menu Path: System > Management Interface > SNMP - SNMP Account

This page lets you configure the SNMP management accounts for the device. SNMP management accounts are provided for Admin and User-level authority.

SNMP Account List

UI Setting	Description
Username	Shows the username of the SNMP account.
Authority	Shows the authority level of the management account.
Authentication Type	Shows the authentication type used for the account.
Authentication Password	Shows the authentication password if MD5 / SHA / SHA-256 / SHA-512 is selected for the authentication type.


UI Setting	Description
Encryption Method	Shows the encryption method used for the account.
Encryption Key	Shows the encryption password for the account if DES / AES is selected for the encryption method.

Creating an SNMP Account

Menu Path: System > Management Interface > SNMP - SNMP Account

Clicking the Add () icon on the System > Management Interface > SNMP - SNMP Account page will open this dialog box. This dialog lets you create an SNMP account.

Click **CREATE** to save your changes and add the new account.

UI Setting	Description	Valid Range	Default Value
Username	Specify a username for the SNMP account.	0 to 32 characters	N/A
Authority	Specify the authority level of the management account.	Read/Write / Read	Read/Write
	 Read/Write: Can read/write configuration settings 		
	 Read: Can only read configuration settings 		

UI Setting	Description	Valid Range	Default Value
Authentication Type	Specify the authentication type to use for the account.	None / MD5 / SHA / SHA-256 / SHA- 512	N/A
Authentication Password	Specify the authentication password if MD5 / SHA / SHA-256 / SHA-512 is selected for the authentication type.	8 to 64 characters	N/A
Encryption Method	Specify encryption method to use for the account.	Disabled / DES / AES	Disabled
Encryption Key	Specify encryption password for the account if DES / AES is selected for the encryption method.	8 to 64 characters	N/A

Time

Menu Path: System > Time

This page lets you configure the time related settings.

This page includes these tabs:

- System Time
- NTP Server

About System Time

Correct system time is required for automatic warning emails to include a time and date stamp.

✓ Note

Make sure to update the Current Time and Current Date after the switch has been powered off for three days or more. This is particularly important when no NTP server or Internet connection are available.

This section describes how to configure the **System Time**, **NTP Server**, and **Time Synchronization** settings for the switch. The switch has a time calibration function based on information from an NTP server or a user-specified time and date, allowing functions such as automatic warning emails to include a time and date stamp.

Configuring System Time

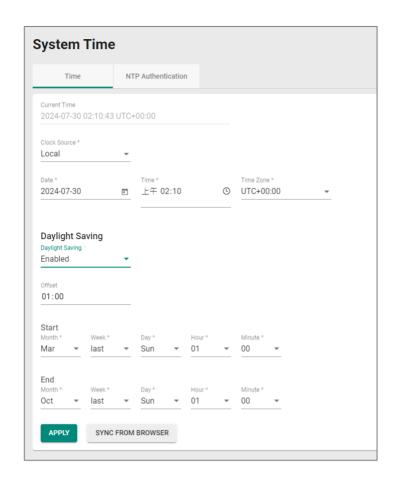
To configure System Time, do the following:

- 1. Sign in to the device using administrator credentials.
- 2. Go to **System > Time > System Time**, and then click on the **Time** tab.
- 3. Set Clock Source to Enabled.
- 4. Configure the **Date**, **Time**, and **Time Zone**. Specify **Daylight Savings** details if appropriate for your region.
- 5. Click **Apply** to save your settings.

System Time

Menu Path: System > Time > System Time

This page lets you configure the system time.


This page includes these tabs:

- Time
- NTP Authentication

System Time - Time

Menu Path: System > Time > System Time - Time

This page lets you configure your device's system time.

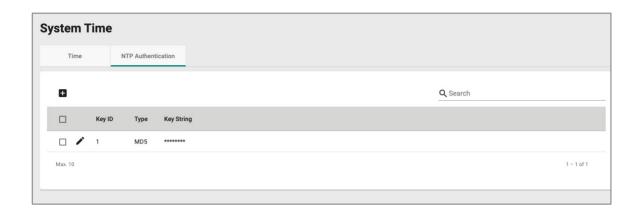
UI Setting	Description	Valid Range	Default Value
Current Time	Show the current time according to your local default settings.	N/A	N/A
Clock Source	Specify whether to set the time manually (Local), from an SNTP server, or from an NTP server.	Local / SNTP / NTP	Local
Date (If Clock Source is Local)	Select the current date from the calendar.	Calendar	Local Date
Time (If Clock Source is Local)	Specify the current time. You can manually input the time, or you can click SYNC FROM BROWSER to set the time based on the time used by your web browser.	Timestamp	N/A

UI Setting	Description	Valid Range	Default Value
Time Zone (If Clock Source is Local)	Specify the time zone used for the device.	Drop-down list of time zones	UTC+00:00
1st Time Server: IP Address/Domain Name (If Clock Source is SNTP or NTP)	Specify the IP or domain address of the 1st SNTP/NTP server to use (e.g., 192.168.1.1, time.stdtime.qov.tw, or time.nist.qov).	Valid IP address or domain name	t <u>ime.nist.gov</u>
2nd Time Server: IP Address/Domain Name (If Clock Source is SNTP or NTP)	Specify the IP or domain address of the 2nd SNTP/NTP server to use if the first SNTP/NTP server fails to connect.	Valid IP address or domain name	N/A
Query Interval (If Clock Source is SNTP)	Specify the query interval time.	Drop-down list of intervals	9 (512 sec.)
Authentication (If Clock Source is NTP)	Select an NTP authentication key to use, or disable authentication for the time server. Note To use authentication, you need to create an NTP authentication entry first. Refer to NTP Authentication for more information.	Disabled / Drop- down list of NTP key IDs	Disabled

Daylight Saving

UI Setting	Description	Valid Range	Default Value
Daylight Saving	Enable or disable use of daylight saving time adjustment.	Enabled / Disabled	Disabled
Offset	Specify the number of hours and minutes to add during the daylight saving time period.	01:00	N/A

UI Setting	Description	Valid Range	Default Value
Start Month/Week/Day/Hour/Minute	Specify the start time for the daylight seaving period.	Month: Drop- down list of months	Mar/last/Sun/01/00
		Week: 1st / 2nd / 3rd / 4th / last	
		Day: Drop- down list of days of the week	
		Hour: Drop- down list of hours	
		Minute: Drop- down list of minutes	
End Month/Week/Day/Hour/Minute	Specify the end time of the daylight saving period.	Month: Drop- down list of months	Oct/last/Sun/01/00
		Week: 1st / 2nd / 3rd / 4th / last	
		Day: Drop- down list of days of the week	
		Hour: Drop- down list of hours	
		Minute: Drop- down list of minutes	


NTP Authentication

Menu Path: System > Time > System Time > NTP Authentication

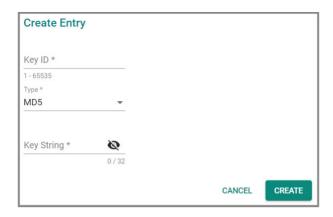
This page lets you configure NTP authentication for when the device is acting as an NTP client. This helps ensure that received NTP responses are from the NTP server and have not been modified in transit.

O Limitations

You can create up to 10 NTP authentication entries.

UI Setting	Description
Key ID	Shows the key ID for NTP authentication.
Туре	Shows the authentication type.
Key String	Shows the password used for authentication.

Creating an NTP Authentication Entry


Menu Path: System > Time > System Time > NTP Authentication

Clicking the Add () icon on the System > Time > System Time > NTP

Authentication page will open this dialog box. This dialog lets you create an NTP

authentication entry.

Click **CREATE** to save your changes and add the new account.

UI Setting	Description	Valid Range	Default Value
Key ID	Specify the Key ID to use for NTP authentication.	1 to 65535	N/A
Туре	Specify the authentication type.	MD5	MD5
Key String	Specify the password to use for the authentication key.	0 to 32 characters	N/A

NTP Server

Network Time Protocol (NTP) is used to synchronize the clocks of computers and other devices on a network, and is widely used on the Internet and in local networks to ensure accurate timekeeping. NTP operates by exchanging time information between servers and clients.

How NTP Servers Work

Typically, there are several hierarchical strata of NTP servers.

- **Stratum 1 servers** are directly connected to highly accurate time sources, such as atomic clocks or GPS receivers.
- **Stratum 2 servers** synchronize their time with Stratum 1 servers.
- **Client devices** synchronize their clocks with NTP servers, which helps maintain accurate time across the network.

You can configure your device to act as an NTP client to sync the system time with a specified NTP server.

You can also configue your device to act as an NTP server to provide time sync service to end devices on the network. When enabling the NTP server function, the device will answer the NTP queries sent from NTP client and provide the device's time to the client.

NTP Server

Menu Path: System > Time > NTP Server

This page lets you configure your device to act as an NTP server.

UI Setting	Description	Valid Range	Default Value
NTP Server	Enable or disable the NTP server.	Enabled / Disabled	Disabled
Client Authentication	Enable or disable NTP client authentication.	Enabled / Disabled	Disabled

Configuring NTP Server

Moxa devices can serve as network time protocol (NTP) servers to allow other devices to synchronize their clocks over the network.

NTP operates by exchanging time information between servers and clients.

Typically, there are several hierarchical strata of NTP servers. Stratum 1 servers are directly connected to highly accurate time sources, such as atomic clocks or GPS receivers. Stratum 2 servers synchronize their time with Stratum 1 servers, and so on.

Client devices synchronize their clocks with NTP servers, which helps maintain accurate time across the network.

NTP is widely used on the internet and in local networks to ensure accurate timekeeping, and it has been a critical component of network infrastructure for decades.

Our switch can act as NTP client to sync the system time with the configured NTP server (Stratum 1). Our switch can also act as an NTP server (Stratum 2) to propagate the synchronized time to other clients on the network.

Enabling NTP Server

- 1. Sign in to the device using administrator credentials.
- 2. Go to **System > Time > NTP Server**.
- 3. Set NTP Server to Enabled.
- 4. To Enable Client Authentication and create keys, do the following:
- 5. Set Client Authentication to Enabled.
- Go to System > Time > System Time > NTP Authentication, and then click
 Add.

The **Create Entry** screen appears.

7. Key ID Type Key String Configure all of the following, and then click **Create**:

Option	Value
Key ID	Specify a number to identity the key
Туре	MD5
Key String	Specify a key at least one character long.

Provisioning

Auto Configuration

This is a Moxa-proprietary feature that enables zero-touch deployment and configuration management for network devices. It leverages the Dynamic Host Configuration Protocol (DHCP) service to automate the provisioning process during device boot-up.

Benefits of Auto Configuration include:

- **Reduced Manual Work:** Eliminates the need to manually configure each device individually, saving significant time and effort.
- **Faster Deployment:** Streamlines the configuration process for quicker network setup, especially for large deployments.

How Auto Configuration Works

Auto Configuration can be broken down into several distinct stages. Here's a breakdown of the key stages.

Stage 1: Device Initialization

• The device boots up and acquires an IP address from the DHCP server.

Stage 2: DHCP Server Guidance

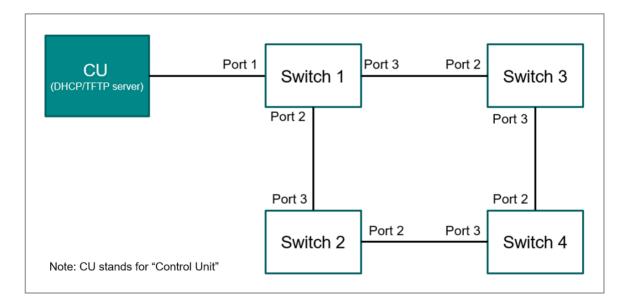
- The DHCP server transmits crucial information to the device using DHCP options:
 - Option 66: Specifies the address of the file server where the configuration files are stored.
 - Option 67: Identifies the specific configuration file on the file server that the device should download.

Stage 3: Retrieving and Applying the Configuration

- Based on the information received from the DHCP options, the device contacts the file server to request the specified configuration file.
- If a matching configuration file is found, the device downloads it from the file server and automatically applies the settings.

Once the configuration is imported, Auto Configuration is complete.

✓ Note


The process of Auto Configuration uses DHCP Option 61 Client-Identifier and LLDP information to determine who should offer the IP and related configuration. The device sends DHCP discover/request packets with Option 61 only through the control unit port connected to the DHCP/file server. DHCP discover/request packets sent through other ports will not contain Option 61.

With Auto Configuration, you can set up larger networks with multiple switches, connect the server to a ring network, and have the switches get the corresponding configuration and be automatically configured one by one.

Here is an example of 4 switches connected in a ring and 1 server with DHCP and file transfer functionality.

✓ Note

Please make sure the initial network is loop-free by opening a ring or using a configuration with ring protocol enabled. Here, we suggest using Turbo Ring v2 as a redundant protocol. Refer to Redundancy for more information.

Step 1: Auto Configuration on Switch 1

• After device initialization, switch 1 will follow the auto configuration stages to retrieve and apply the corresponding configuration file.

Step 2: Auto Configuration on Switch 2 and 3

- After Switch 1 applies the configuration successfully, the switch can be configured as a DHCP server to give Switch 2 and Switch 3 offers.
- Switch 2 and 3 will follow the Auto Configuration stages to retrieve and apply the configuration.

✓ Note

Currently, setting up a DHCP server with Option 66 and 67 is not supported on MX-NOS switches. They will automatically propagate the Option 66 value from the server and use an offered IP address as Option 67. Therefore, please make sure the configuration filenames for the switches match and are stored in the corresponding file server.

Step 3: Auto Configuration on Switch 4

 After Switch 2 finishes, it can be configured as a DHCP server to provide an offer to Switch 4.

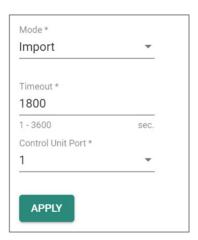

Here are tips for network design and configuration preparation for Moxa network devices:

- To have a better zero-touch and massive deployment, using a custom default configuration is useful. With a custom default, the switches can have the same default configuration with Auto Configuration enabled, and with the same redundant protocol and VLAN settings. Once the switches reboot, the devices will start get the configuration automatically. Please refer to Deploying Multiple
 Devices Using Auto Configuration or Maintenance and Tools for more information.
- 2. There can be multiple file servers in a network for faster file transfers and load balancing.
- To avoid conflicting offers, please make sure each device will only get their offer from a single source. Please refer to the DHCP server settings for port-based offers.
- 4. The amount of time needed for the Auto Configuration process depends on the size of the network, file transfer time, and LLDP/DHCP timer.

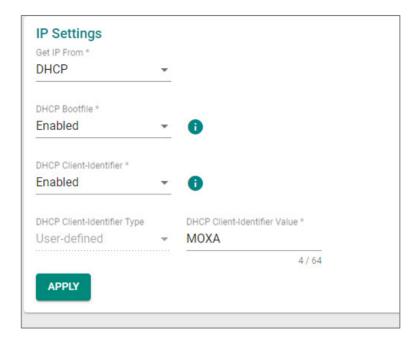
Using Auto Configuration for Single Device Deployment

This section is going to explain the steps about how to update the configuration via auto configuration. The expected result is to deploy the configuration into the device after boot up automatically.

The example topology is shown as follow.



Before you begin:


- The availability of DHCP server with option 61, 66, and 67. Make sure there is an entry for Client-ID "MOXA".
- The availability of TFTP server and the device's configuration file
- The DHCP server can be reachable via control unit port

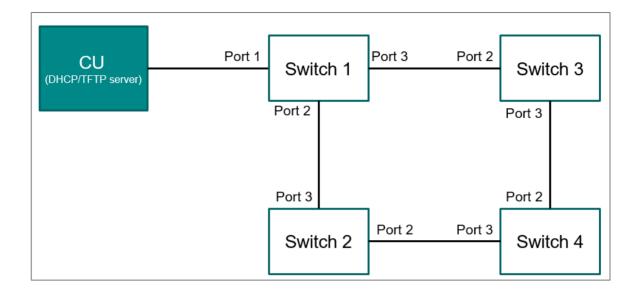
The modes of auto configuration are Disabled, Import and Propagate. The **import** mode means it will import the configuration and IP offer via the control unit port from DHCP server. In this mode, please make sure the Client-ID and Bootfile options is configured properly.

- 1. Boot Device up.
- 2. Enable Auto Configuration with **Import** mode and **Control Unit Port** set as 1.

- 3. Click APPLY
- 4. Set IP Configuration about IP Settings. Get IP From **DHCP** with **DHCP Bootfile** enabled and **DHCP Client-Identifier**. Here we use "MOXA" as example for DHCP Client-Identifier.

- 5. Click APPLY
- 6. Reboot Device

Results: The device will automatically get the configuration from DHCP and file server and applied to itself. There are logs, *Auto Configuration process start, receive IP Address, Download Configuration file* and *Import Configuration file* in the Event Logs.

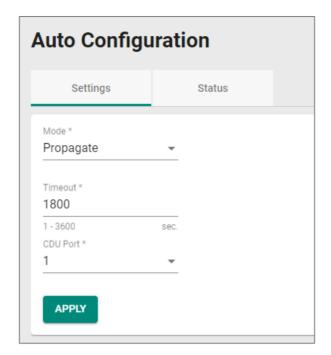

✓ Note

The auto configuration status displays the current situation of the device, once the auto configuration is finished. It may change to different status depends on the new configuration.

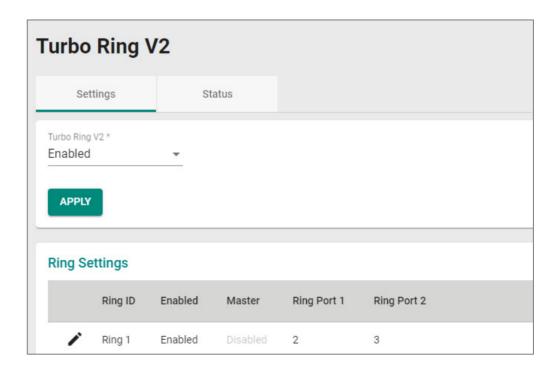
Deploying Multiple Devices Using Auto Configuration

Here is an example of how to deploy a configuration on multiple devices with auto configuration.

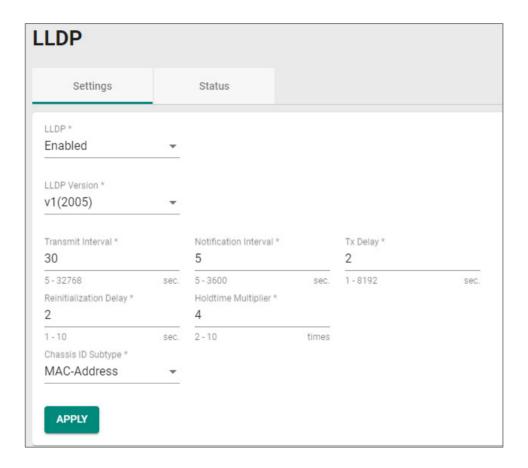
The example topology is shown as follows.


Before you begin:

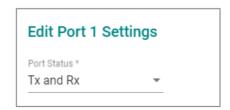
- The availability of DHCP server with option 61, 66, and 67. Make sure there is an entry for Client-ID "MOXA".
- The availability of TFTP server and the devices' configuration files
- The DHCP server can be reachable via the control unit port
- The network is loop-free by opening a ring or using Turbo Ring v2.


Operational configuration preparation

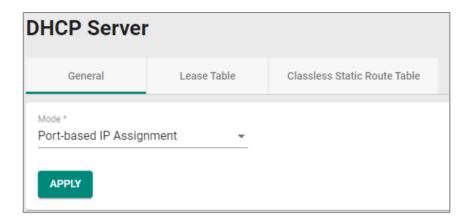
The steps list here will help you to prepare the corresponding configuration for deployment.


1. Enable Auto Configuration with **Propagate** mode.

- 2. Click APPLY
- 3. Set IP Configuration. Get IP From Manual and IP address accordingly
- 4. Click APPLY
- 5. Set the Turbo Ring v2 as **Enabled** with Ring Port as **Port 2** and **Port 3** in Ring 1 on Redundancy


- 6. Click APPLY
- 7. Set the LLDP as **Enabled**, Chassis ID Subtype as **MAC-Address**.

Note


The LLDP Transmit Interval in Propagate mode will not take affect on the Auto Configuration waiting time.

- 8. Click APPLY
- 9. Enable the LLDP Port Status as **Tx and Rx** on Port 1, 2 and 3

10. Click APPLY

11. Enable the DHCP Server with Mode Port-based IP Assignment

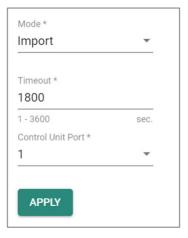
12. Create corresponding entries on DHCP Server
Here, we use IP 192.168.127.1, 192.168.127.2, 192.168.127.3, 192.168.127.4
as example for Switch 1, 2, 3 and 4 accordingly.


	Enable	Port	IP Address	Subnet Mask	Lease Time
Switch 1	Enabled	2	192.168.127.2	24 (255.255.255.0)	86400
Switch 1	Enabled	3	192.168.127.3	24 (255.255.255.0)	86400
Switch 2	Enabled	2	192.168.127.4	24 (255.255.255.0)	86400
Switch 2	Enabled	3	192.168.127.1	24 (255.255.255.0)	86400
Switch 3	Enabled	2	192.168.127.1	24 (255.255.255.0)	86400
Switch 3	Enabled	3	192.168.127.4	24 (255.255.255.0)	86400

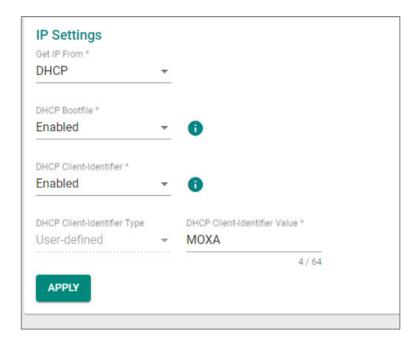
	Enable	Port	IP Address	Subnet Mask	Lease Time
Switch 4	Enabled	2	192.168.127.3	24 (255.255.255.0)	86400
Switch 4	Enabled	3	192.168.127.2	24 (255.255.255.0)	86400

13. Click APPLY

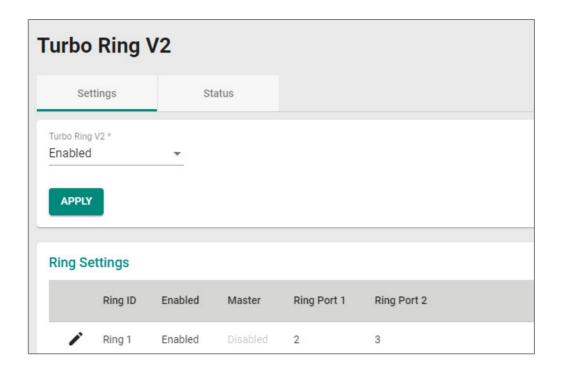
14. Export configuration on Configuration Backup and Restore page and set


Configuration Name as switch IP address (For example, the configuration for
switch 1, the filename will be the IP address of switch 1)

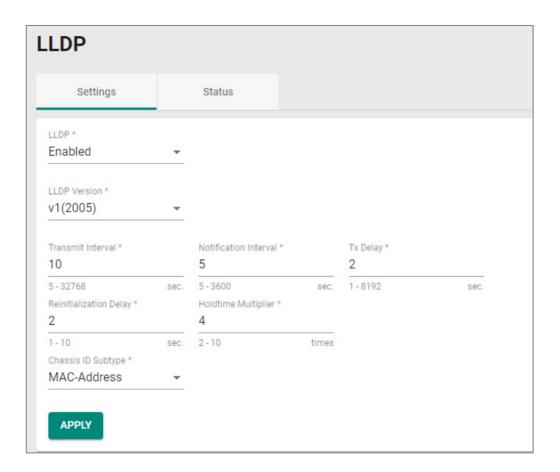
Initial switch setting preparation


The steps listed here will guide you how to use the customer default for creating an Auto Configuration environment.

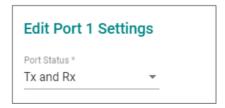
1. Enable Auto Configuration with **Import** mode and **Control Unit Port** set as 1.

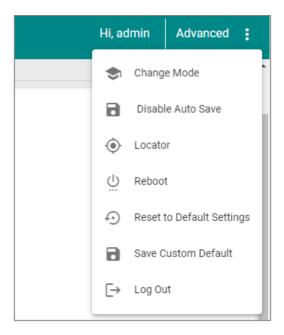


2. Click APPLY


3. Set IP Configuration about IP Settings. Get IP From **DHCP** with **DHCP Bootfile** enabled and **DHCP Client-Identifier**. Here we use "MOXA" as example for DHCP Client-Identifier.

- 4. Click APPLY
- 5. Set the Turbo Ring v2 as **Enabled** with Ring Port as **Port 2** and **Port 3** in Ring 1 on Redundancy


- 6. Click APPLY
- 7. Set the LLDP as **Enabled**, Chassis ID Subtype as **MAC-Address** and Transmit Interval as **10** seconds.


Note

The LLDP information will be used to make sure the adjacent devices and provide the Auto Configuration details. Here we suggest to set the LLDP transmit interval from default 30 seconds into 10 seconds to reduce the waiting time for multiple devices configuration deployment.

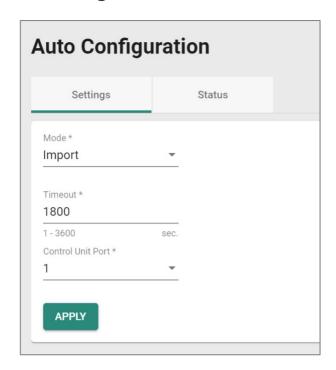
- 8. Click APPLY
- 9. Enable the LLDP Port Status as Tx and Rx on Port 1, 2 and 3

- 10. Click APPLY
- 11. Save the configuration into Custom Default

Those settings list above are applied to all switches 1, 2, 3, and 4.

Auto Configuration

- 1. Restart all the switches
- 2. Wait the certain time for devices boot up and the operation of Auto Configuration
- 3. Configuration imported successfully
- 4. Check the Auto Configuration status and logs


Results: The device will automatically get the configuration from DHCP and file server and applied to itself. There are logs, *Auto Configuration process start, receive IP Address, Download Configuration file* and *Import Configuration file* in the Event Logs. Once the auto configuration is done, the auto configuration status shall display the DHCP server, File server and File Name on the UIs.

Auto Configuration

Menu Path: Provisioning > Auto Configuration

This page lets you configure the Auto Configuration feature for your device.

Auto Configuration Settings

UI Setting	Description	Valid Range	Default Value
Mode	Select the operational mode to use. Disabled: Auto Configuration will be disabled. Import: In this mode, Auto Configuration only sends Option 61 packets over the control unit port. This requires DHCP Client to be enabled, and the boot file and client ID must be preconfigured in IP Configuration. Propagate: In this mode, the DHCP server assigns IP addresses based on LLDP information. This requires IP Configuration to be set to manual and LLDP to be enabled.	Disabled / Import / Propagate	Disabled
Timeout (If Mode is Import)	Specify the Auto Configuration timeout value in seconds. This parameter defines the maximum time (in seconds) your device will wait for a DHCP offer during the bootup process. If the device fails to receive a DHCP offer within the specified timeout period, the Automatic Configuration process ceases. A log message is recorded to indicate this event for troubleshooting purposes.	1 - 3600	1800 sec.
	Note The overall duration of the Auto Configuration process can be influenced by various factors, including the network size, file transfer times, and other network-related conditions.		
Control Unit Port	Select the control unit port from the drop-down list. This is the port that connects to the DHCP/file server.	Drop-down list of ports	1

Auto Configuration Information

Auto Configuration Information

Status

Propagating information to the DHCP Server

DHCP Server

192.168.127.94

File Server

192.168.127.90

File Name

192.168.127.253

UI Setting	Description
Status	Shows the current status of Auto Configuration.
	The status may be one of the following:
	Auto Configuration process started
	Received IP address
	Downloaded the configuration
	Imported the configuration
	Propagating information to the DHCP Server
	Auto Configuration is disabled
	Insufficient information to propagate
	Auto Configuration timed out
	Failed to download the configuration
	Failed to import the configuration
	Auto Configuration will be triggered after the reboot
DHCP Server	Shows the server information if the device successfully receives an offer from a DHCP server.
File Server	Shows the file server information retrieved from a DHCP Option 66 offer.
File Name	Shows the file name information retrieved from a DHCP Option 67 offer.

Port

Menu Path: Port

This section lets you configure various port-specific functions for the switch.

This section includes these pages:

- Port Interface
- Link Aggregation
- PoE

Port Interface

Menu Path: Port > Port Interface

This section lets you configure the port interface functions.

This section includes these pages:

- Port Settings
- Linkup Delay

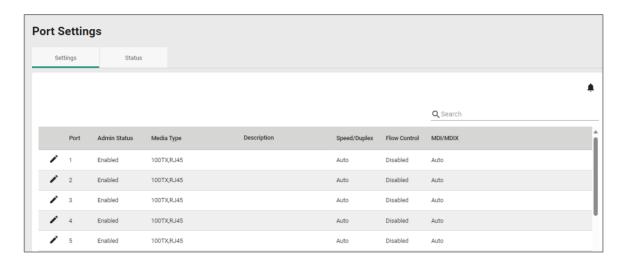
Port Settings

Port Settings allows you to manage and configure the various parameters of your device's individual network ports. By letting you adjust settings such as speed, duplex, and flow control, it helps you optimize the performance of your network connections.

Port Settings

Menu Path: Port > Port Interface > Port Settings

This page lets you configure the port settings.

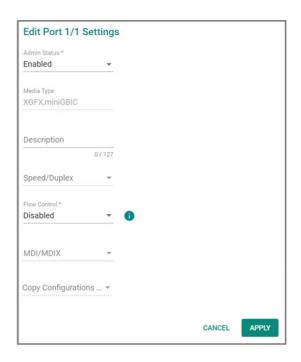

This page includes these tabs:

- Settings
- Status

Port Settings - Settings

Menu Path: Port > Port Interface > Port Settings - Settings

This page lets you configure basic port settings.

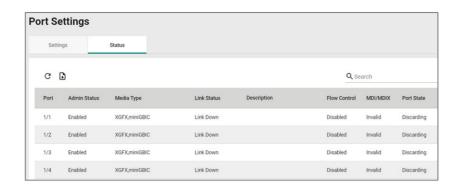

UI Setting	Description
Port	Shows which port the entry describes.
Admin Status	Shows whether admin status is enabled for data transmission through the port.
Media Type	Shows the detected media type for the port.
Description	Shows the description used to help identify the port.
Speed/Duplex	Shows the port speed and duplex option selected for the port.
Flow Control	Shows whether flow control is enabled for the port.
MDI/MDIX	Shows the MDI/MDIX option used for the port.

Editing Port Settings

Menu Path: Port > Port Interface > Port Settings - Settings

Clicking the **Edit** () icon for the desired port on the **Port > Port Interface > Port Settings - Settings** page will open this dialog box. This dialog lets you configure the port settings parameters.

Click **APPLY** to save your changes.


UI Setting	Description	Valid Range	Default Value
Admin Status	Enable or disable data transmission through the port.	Enabled / Disabled	Enabled
Media Type	Displays the detected media type for each port. This setting cannot be changed.	Detected media type	N/A
Description	Specify a description to help identify the port.	0 to 127 characters	N/A
Speed/Duplex	Select the speed/duplex mode to use for the port. Select Auto to enable the port to negotiate the optimal speed using the IEEE 802.3u protocol with connected devices. The port and connected devices will determine the most suitable speed for the connection. Alternatively, choose a fixed speed and duplex option if the connected Ethernet device has trouble with autonegotiation. This can be useful for connecting legacy devices without auto-negotiation support. Note Speed/Duplex cannot be set for fiber ports.	Auto / 10M Half / 10M Full / 100M Half / 100M Full	Auto

UI Setting	Description	Valid Range	Default Value
Flow Control	 Note The switch and connected device will automatically determine the final result. 	Enabled / Disabled	Disabled
	Note Flow control can be enabled, but it is only effective at full duplex. Back pressure is automatically enabled, but it is only effective at half duplex.		
MDI/MDIX	Select the MDI/MDIX mode to use for the port. Select Auto to allow the port to auto-detect the port type of the connected Ethernet device, and change the port type accordingly. Alternatively, manually select MDI or MDIX if the device has trouble auto-detecting the port type.	Auto / MDI / MDIX	Auto
	✓ Note MDI/MDIX cannot be set for fiber ports.		
Copy configurations to ports	Select the ports you want to copy this configuration to. Note The copy configuration feature cannot be used with fiber ports.	Drop-down list of ports	N/A

Port Settings - Status

Menu Path: Port > Port Interface > Port Settings - Status

This page lets you view the status and configuration of the device's ports.

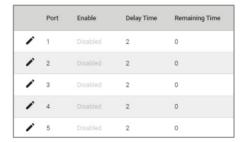
UI Setting	Description
Admin Status	Shows whether admin status is enabled for data transmission through the port.
Media Type	Shows the detected media type for the port.
Link Status	Shows the port's link status. Link Down will be shown If the link is down. Otherwise, the port's speed and duplex will be shown.
Description	Shows the description used to help identify the port.
Flow Control	Shows whether flow control is enabled for the port.
MDI/MDIX	Shows the MDI/MDIX option used for the port.
Port State	Shows whether the port status is discarding or forwarding.

Linkup Delay

Linkup delay, also known as link flap prevention, is used to prevent a port alternating between link up and link down statuses, and is useful when a link connection is unstable. An unstable connection might be caused by situations such as a faulty cable, faulty fiber transceiver, duplex mismatch, etc. Linkup delay helps you mitigate the risk of an unstable network, particularly when the topology changes frequently.

Linkup Delay

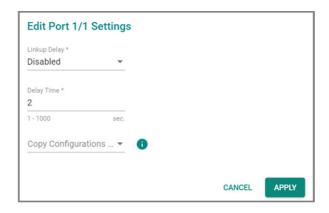
Menu Path: Port > Port Interface > Linkup Delay


This page lets you configure the linkup delay for device's ports.

Linkup Delay Settings - All Ports

UI Setting	Description	Valid Range	Default Value
Linkup Delay	Enable or disable linkup delay for all ports.	Enabled / Disabled	Disabled

Linkup Delay - Port List


UI Setting	Description
Enable	Shows whether linkup delay is enabled or disabled for the port.
Delay Time	Shows the delay time in seconds for the port.
Remaining Time	Shows the remaining time in seconds for the port to alternate between link up and link down.

Linkup Delay - Edit Port Settings

Menu Path: Port > Port Interface > Linkup Delay

To configure linkup delay for a port, click the **Edit** () icon on the desired port on the **Port > Port Interface > Linkup Delay** page will open this dialog box. This dialog lets you configure the linkup delay parameters for the port.

Click **APPLY** to save your changes.

UI Setting	Description	Valid Range	Default Value
Linkup Delay	Enable or disable linkup delay for the port.	Enabled / Disabled	Disabled
Delay Time	Specify the delay time in seconds before the port alternates between link up and link down.	1 to 1000	2
Copy configurations to ports	Select the ports you want to copy this configuration to.	Drop-down list of ports	N/A

Link Aggregation

Link aggregation, also known as port channels or port trunking, helps balance, optimize, and facilitate a device's throughput. This method combines multiple network communication interfaces in parallel to maximize data throughput, increasing data communication efficiency for each port. In addition, it also acts as a useful method for network redundancy when a link fails. In general, link aggregation supports combining multiple physical switch ports into a single, bandwidth-efficient data communication route. This can improve network load sharing and increase network reliability.

Static Trunk

For some networking applications, a situation can arise where traffic from multiple ports is required to be filtered through a single port. For example, if there are 30 UHD IP surveillance cameras deployed and connected in a ring, traffic can reach up to 1 Gbps, causing a surge in traffic that can increase network loading by up to 50%. Hence, the

uplink port needs to use static trunking to provide additional bandwidth and redundancy protection.

LACP

Link Aggregation Control Protocol (LACP) is a protocol defined by IEEE 802.3ad that allows a network device to negotiate automatic bundling of several ports by sending LACP packets to the peer, a directly connected device that also uses LACP.

Link Aggregation Algorithms

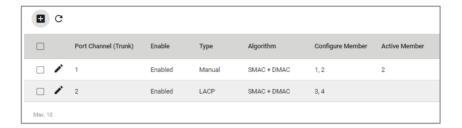
In link aggregation, three load-sharing hash algorithms can be used to optimize packet forwarding:

SMAC: Source MAC (SMAC) uses the source MAC address for a packet to optimize
packet forwarding to ensure that packets from the same source address follow the
same path consistently to optimize connection stability and reduce the chance of
out-of-order packet delivery.

DMAC: Destination MAC (DMAC) uses the destination MAC address for a packet to
optimize packet forwarding to ensure that packets being sent to the same
destination address are consistently sent over the same link to optimize
connection stability and traffic distribution.

• **SMAC + DMAC:** SMAC and DMAC can be used together for more complex hash algorithms, but tends to be used only when a network has few clients and servers.

Link Aggregation Settings

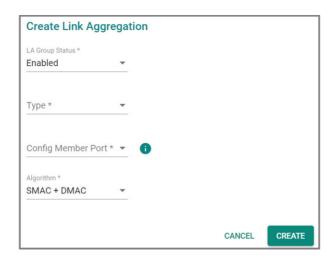

Menu Path: Port > Link Aggregation

This page lets you configure link aggregation groups for each port. A link aggregation group combines multiple physical ports into a single logical link.

O Limitations

You can create up to 10 link aggregation groups.

Link Aggregation List

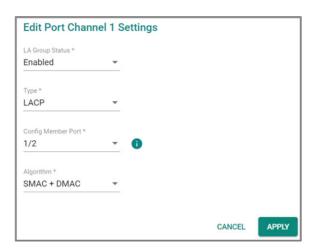

UI Setting	Description
Port Channel (Trunk)	Shows the Port Channel (Trunk) number of the link aggregation group.
Enable	Shows whether the link aggregation group is enabled.
Туре	Shows the method for configuring the link aggregation group.
Algorithm (Only in Advanced Mode)	Shows the load-sharing hash algorithms being used for the link aggregation group.
Configure Member	Shows the configured member ports in the link aggregation group.
Active Member	Shows the active member ports in the link aggregation group.

Creating a Link Aggregation Group

Menu Path: Port > Link Aggregation

Clicking the **Add** () icon on the **Port** > **Link Aggregation** page will open this dialog box. This dialog lets you create a link aggregation group.

Click **CREATE** to save your changes and add the new link aggregation group.

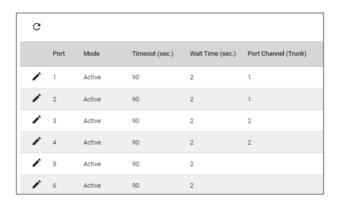

UI Setting	Description	Valid Range	Default Value
LA Group Status	Enable or disable the link aggregation group.	Enabled/ Disabled	Enabled
Туре	Select the method to use for configuring the link aggregation group. Manual: This allows you to specify the ports to be	Manual / LACP	N/A
	included in the LA Group.		
	LACP : LACP protocol will be used to automatically negotiate link aggregation configuration between devices.		
Config Member Port	Select the ports to add to the link aggregation group.	Device ports	N/A
	 Note A port cannot be assigned to multiple link aggregation groups. This is because each port can only be a member of a single link aggregation group at a time. A link aggregation group (Port-channel) cannot be created when selected ports are operating at different speeds. 		
Algorithm (Only in Advanced Mode)	Select the load-sharing hash algorithms to be used for configuring link aggregation.	SMAC / DMAC / SMAC+DMAC	SMAC+DMAC

Editing a Link Aggregation Group

Menu Path: Port > Link Aggregation

Clicking the **Edit** () icon on the **Port** > **Link Aggregation** page will open this dialog box. This dialog lets you edit Link Aggregation group settings.

Click **APPLY** to save your changes.



UI Setting	Description	Valid Range	Default Value
LA Group Status	Enable or disable the link aggregation group.	Enabled/ Disabled	Enabled
Туре	Select the method to use for configuring the link aggregation group. Manual: This allows you to specify the ports to be included in the LA Group. LACP: LACP protocol will be used to automatically negotiate link aggregation configuration between devices.	Manual / LACP	N/A
Config Member Port	 Note A port cannot be assigned to multiple link aggregation groups. This is because each port can only be a member of a single link aggregation group at a time. A link aggregation group (Port-channel) cannot be created when selected ports are operating at different speeds. 	Device ports	N/A

UI Setting	Description	Valid Range	Default Value
Algorithm (Only in Advanced Mode)	Select the load-sharing hash algorithms to be used for configuring link aggregation.	SMAC / DMAC / SMAC+DMAC	SMAC+DMAC

Link Aggregation - Port Settings for LACP

This table lets you see the LACP settings for each port.

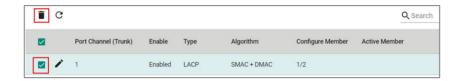
UI Setting	Description
Port	Shows which port the entry describes.
Mode	Shows the LACP mode for the port.
Timeout (sec.)	Shows the LACP inactivity timeout in seconds for the port.
Wait Time (sec.)	Shows the LACP wait time in seconds for the port.
Port Channel (Trunk)	Shows the link aggregation group (Port channel) number for the port.

Editing Port Settings for LACP

Menu Path: Port > Link Aggregation

Clicking the **Edit** () icon by a port on the **Port** > **Link Aggregation** page will open this dialog box. This dialog lets you edit the port settings for LACP parameters if your link aggregation type is set to LACP.

Click **APPLY** to save your changes.



UI Setting	Description	Valid Range	Default Value
Port Channel (Trunk)	Shows the link aggregation group (Port channel) number of the port. This setting cannot be changed.	Port Channel Number	N/A
Mode	 Select the LACP mode to decide how the ports establish LACP links. Active: Ports will actively query link partners for LACP by sending LACP PDUs. If the partner is also LACP-enabled, the ports will establish an LACP link. Passive: Ports can respond to LACP queries from active ports and passively establish LACP links. They will not initiate any LACP negotiation on their own. For LACP to establish a link, at least one port for the link must use active mode. If both ports are passive, no LACP PDUs will be sent, and no link will be established. 	Active / Passive	Active
Timeout	Specify the LACP inactivity timeout in seconds. This is the amount of time that must elapse without receiving any LACP PDUs before a link is considered to have failed.	3 / 90	90
Wait Time	Specify the LACP wait time in seconds. This is the amount of time that must elapse after a LACP link comes up before it is added to the link aggregation group.	0 to 10	2
Copy configurations to ports	Select the ports you want to copy this configuration to.	Drop-down list of ports	N/A

Deleting a Link Aggregation Group (Port Channel)

Menu Path: Port > Link Aggregation

You can delete a link aggregation group by using the checkboxes to select the entries you want to delete, then clicking the **Delete** (\blacksquare) icon.

PoE

Power over Ethernet (PoE) provides power along with network connectivity to PoE network devices (PDs), allowing them to be powered and connected to the network using a single network cable. This can greatly simplify installation, maintenance, and troubleshooting of these PoE devices, especially when they are installed in areas that are difficult to reach or do not have power outlets nearby.

PoE is frequently used with a variety of devices:

- Surveillance cameras
- Security I/O sensors
- Industrial wireless access points
- Emergency IP phones

Moxa devices also support the high-power PoE+ standard and advanced PoE management functions such as PD failure check, legacy PD detection, and auto power cutting. These work together to provide critical security systems with a convenient and reliable Ethernet network that is easier to manage.

PoE Settings

Menu Path: Port > PoE

This page lets you configure your device's Power over Ethernet (PoE) settings. PoE allows your Moxa device to power other connected PoE Ethernet devices—such as security cameras, wireless access points, and sensors—through the Ethernet cable.

This page includes these tabs:

- General
- PD Failure Check
- Scheduling
- Status

✓ Note

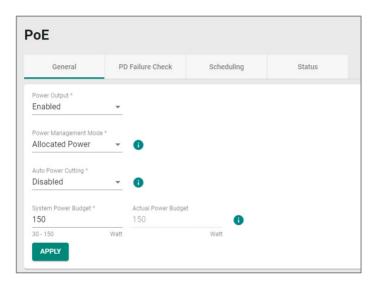
PoE functionality is only available on specific PoE-enabled Moxa device models. Connected PoE devices must support the IEEE 802.3af/at standard in order to use this feature.

C Limitations

Only PoE Type 1 (802.3af) and Type 2 (802.3at) are supported, with a maximum of Class 4 and 30 W per port.

PoE - General

Menu Path: Port > PoE - General


This page lets you enable PoE power output and configure system-level PoE settings.

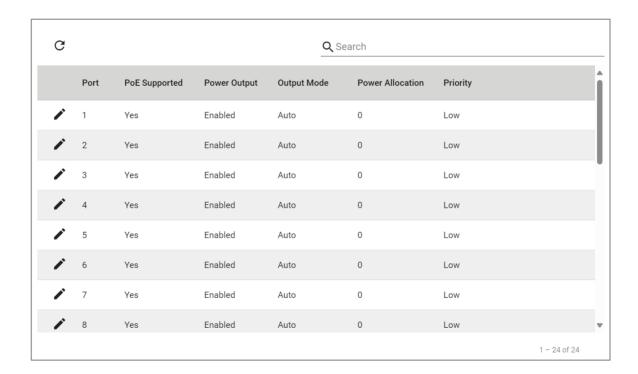
✓ Note

When the PoE function is activated, PoE-enabled ports should only be connected to standard/legacy powered devices.

If there is a need to connect non-powered devices to a PoE-enabled port, it is recommended to disable PoE for the port to prevent unnecessary PoE detection behavior.

PoE Settings

UI Setting	Description	Valid Range	Default Value
Power Output	Enable or disable PoE.	Enabled / Disabled	Enabled
Power Management Mode	 Specify whether the power budget for all ports should be calculated. Allocated Power: This calculates the power budget based on the Power Allocation settings of all ports. For more information on per-port power allocation, refer to PoE - Edit Port Settings. Consumed Power: This calculates the power budget based on actual power consumed by all ports. 	Allocated Power / Consumed Power	Allocated Power
Auto Power Cutting	Enable or disable auto power cutting, which allows PoE to be disabled for ports when total power consumption exceeds the system power budget threshold. Ports with lower priority will be disabled before ports with higher priority.	Enabled / Disabled	Disabled


UI Setting	Description	Valid Range	Default Value
System Power Budget	Specify the "total measured power" limit in watts to use for all PoE ports combined.	(Depends on your device model)	(Depends on your device model)
Actual Power Budget	Show the system power budget in watts. This setting cannot be changed.	N/A	150

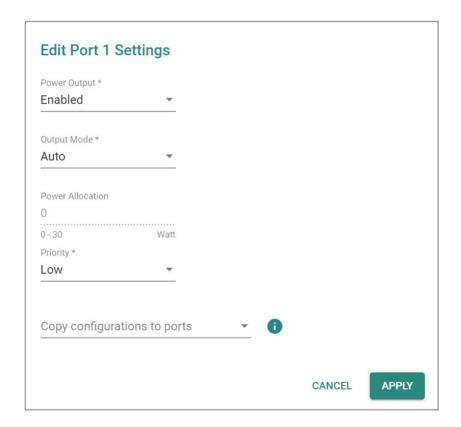
PoE - Port List

✓ Note

For the TN-4500B PSE chip:

- Standard PD: Resistance: $17 \sim 29 \text{ k}\Omega$ and Capacitance: $0 \sim 1 \mu\text{F}$
- Legacy PD: Resistance: 0.86 ~17 k Ω or Resistance: 29~100 k Ω or Capacitance: 1 ~ 12 μF

UI Setting	Description
Port	Shows which port the entry describes.

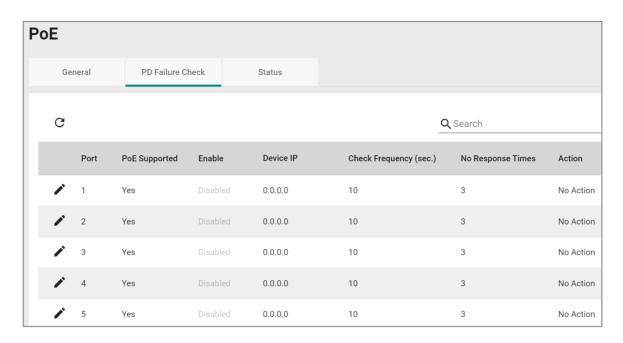

UI Setting	Description
PoE Supported	Shows whether the port supports PoE.
Power Output	Shows whether PoE is enabled for the port.
Output Mode	Shows the output mode for the port.
Power Allocation	Shows the power allocation value for the port. When the output mode is Auto , this value is fixed as 0.
Priority	Shows the port priority: Critical (highest) / High / Low.

PoE - Edit Port Settings

Menu Path: Port > PoE - General

Clicking the **Edit** () icon for a port on the **Port** > **PoE** - **General** page will open this dialog box. This dialog lets you edit PoE settings for the port.

Click **APPLY** to save your changes.



UI Setting	Description	Valid Range	Default Value
Power Output	Enable/disable PoE for this port.	Enabled / Disabled	Enabled
Output Mode	Specify whether to set the PoE output mode to Auto or Force. Auto : Power output will be determined by using 802.3at auto-detection. Force : Power output will be determined by the Power Allocation setting for the port. This may be necessary for PDs that do not follow 802.3af/at standards.	Auto / Force	Auto
Power Allocation	Specify the power in watts to allocate to a connected PD when the Output Mode is set to Force . • When the output mode is Auto , the value is fixed as 0. • When the output mode is set to Force , input a value from 0 to 30.	0 to 30	N/A
Priority	Specify the priority of the port to use with the Auto Power Cutting feature. If Auto Power Cutting is enabled, PoE will be disabled for ports with lower priority when total power consumption exceeds the system power budget threshold. Ports with lower priority will be disabled before ports with higher priority. Refer to <u>PoE - General</u> for more information.	Critical / High / Low	Low
Copy configurations to ports	Select the ports you want to copy this configuration to.	Drop- down list of ports	N/A

PD Failure Check

Menu Path: Port > PoE - PD Failure Check

This tab lets you monitor the status of a powered device (PD) through its IP address. If the PD fails, the switch will not receive a PD response after the defined period, and the authentication process will be restarted. This function is extremely useful for ensuring network reliability and simplifying management.

UI Setting	Description
Port	Shows which port this row describes.
PoE Supported	Shows whether the port supports PoE.
Enable	Shows whether PD failure checking is enabled or disabled for the port.
Device IP	Shows what IP will be monitored for PD failure checking for the port.
Check Frequency (sec.)	Shows how often PD failure checks will be performed for the port.
No Response Times	Shows how many IP checking cycles will be tried before determining a PD is not responding.
Action	Shows what action will be taken if a PD failure is detected for the port.

PD Failure Check - Edit Port Settings

Menu Path: Port > PoE - PD Failure Check

Clicking the **Edit** () icon for an port on the **Port** > **PoE** - **PD Failure Check** page will open this dialog box. This dialog lets you configure the PD failure check settings for each port.

Click **APPLY** to save your changes.

Edit Port 1 Settings Enable * Disabled Device IP * 0.0.0.0 Check Frequency * No Response Times * 10 3 5 - 300 sec. 1-10 times Action * No Action Copy configurations to ports **APPLY** CANCEL

UI Setting	Description	Valid Range	Default Value
Enable	Enable or disable PD failure checks for the port to check the status of PDs via ICMP.	Enabled / Disabled	Disabled
Device IP	Specify the IP address of the PD connected to the port to send ping packets to check for PD connection failure.	Valid IP address	0.0.0.0
Check Frequency	Specify how frequently in seconds ping packets will be sent to to the Device IP . If there is no reply, a "no response" will be detected.	5 to 300	10
No Response Times	Specify the number of consecutive "no response" events required to detect a PD connection failure and execute the specified Action .	1 to 10	3

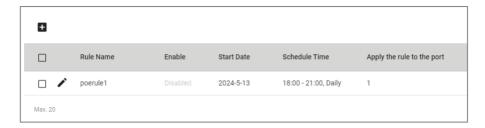
UI Setting	Description	Valid Range	Default Value
Action	Specify the action to take when the number of No Response Times is reached.	No Action / Restart PD / Shut	No Action
	 No Action: No action will be taken. 	Down PD	
	 Restart PD: PoE power to the PD will be stopped, then started again to restart the PD. 		
	 Shut Down PD: PoE power to the PD will be stopped. 		
Copy configurations to ports	Select the ports you want to copy this configuration to.	Drop-down list of ports	N/A

PoE - Scheduling

Menu Path: Port > PoE - Scheduling

This page lets you create PoE scheduling rules that can be applied to individual ports or multiple ports.

O Limitations


You can create up to 20 PoE scheduling rules

PoE - System Time Status

UI Setting	Description
System Time	Shows the current system time of the device.
Local Time Zone	Shows the time zone of the device.
Daylight Saving Time	Shows whether the daylight saving time is on.

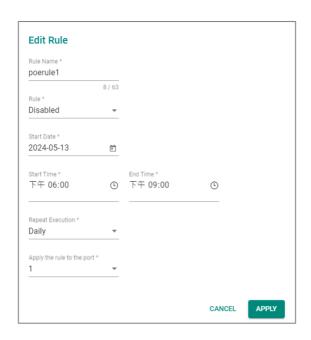
PoE Scheduling - Rule List

UI Setting	Description
Rule Name	Shows the name of the scheduling rule.
Enable	Shows whether the rule is enabled or disabled.
Start Date	Shows when this rule will become active.
Schedule Time	Shows when the PoE will supply power for the specified ports. The system will not supply PoE power outside the scheduled time.
Apply the rule to the port	Shows which ports will use this rule.

PoE Scheduling - Create Rule

Menu Path: Port > PoE - Scheduling

Click **CREATE** to save your changes.


UI Setting	Description	Valid Range	Default Value
Rule Name	Specify a name for the scheduling rule.	1 to 63 characters	None
Rule	Enable or disable the scheduling rule.	Enable / Disable	Disable
Start Date	Specify a start date for the rule to become active.	mm/dd/yyyy	None
Start Time	Specify a start time to enable PoE.	AM/PM hh/mm	None
End Time	Specify an end time to disable PoE.	AM/PM hh/mm	None
Repeat Execution	Specify whether to repeat execution of the rule on a daily or weekly basis.	None / Daily / Weekly	None
Apply the rule to port	Specify which ports should use this rule.	Select port(s) from the drop-down list	None

PoE Scheduling - Edit Rule

Menu Path: Port > PoE - Scheduling

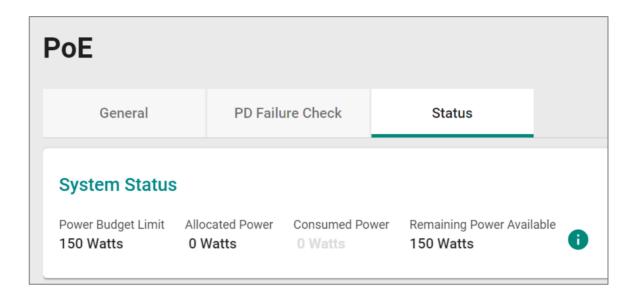
Clicking the **Edit** () icon for a rule on the **Port** > **PoE** - **Scheduling** page will open this dialog box. This dialog lets you edit an existing PoE scheduling rule.

Click **APPLY** to save your changes.

UI Setting	Description	Valid Range	Default Value
Rule Name	Specify a name for the scheduling rule.	1 to 63 characters	None
Rule	Enable or disable the scheduling rule.	Enable / Disable	Disable
Start Date	Specify a start date for the rule to become active.	mm/dd/yyyy	None
Start Time	Specify a start time to enable PoE.	AM/PM hh/mm	None
End Time	Specify an end time to disable PoE.	AM/PM hh/mm	None
Repeat Execution	Specify whether to repeat execution of the rule on a daily or weekly basis.	None / Daily / Weekly	None
Apply the rule to port	Specify which ports should use this rule.	Select port(s) from the drop-down list	None

PoE Scheduling - Delete Rule

Menu Path: Port > PoE - Scheduling


You can delete a rule by using the checkboxes to select the entries you want to delete, then clicking the **Delete** (\blacksquare) icon.

PoE - Status

Menu Path: Port > PoE - Status

This page lets you view PoE system and port status.

PoE - System Status

UI Setting	Description	
Power Budget Limit	Shows the PoE power budget limit.	
Allocated Power	Shows the total allocated PoE power.	
Consumed Power	Shows the total consumed PoE power.	
Remaining Power Available	Shows the remaining power available for the device.	
	✓ Note Remaining Power Available is Maximum Input Power minus Allocated Power.	

PoE Status - Port List

✓ Note

When a higher-power 802.3bt (Class $5\sim8$) PD is connected to a lower-power 802.3at or 802.3af PSE, the PD will simply operate at a lower power state, which is known as downgrading. In this case, the classfication and the device type of the PD will appear as Class 4 and 802.3at because of inherent device limitations.

C E.						Q Search			
Port	PoE Supported	Power Output	Classification	Current (mA)	Voltage (V)	Consumption (W)	Device Type	Configuration suggestion	PD Failure Check Status
1	Yes	Off	Unknown	0.00	0.00	0.00	N/A	Enable PoE power output	Not alive
2	Yes	Off	Unknown	0.00	0.00	0.00	N/A	Enable PoE power output	Not alive
3	Yes	Off	Unknown	0.00	0.00	0.00	N/A	Enable PoE power output	Not alive
4	Yes	Off	Unknown	0.00	0.00	0.00	N/A	Enable PoE power output	Not alive
5	Yes	Off	Unknown	0.00	0.00	0.00	N/A	Enable PoE power output	Not alive

UI Setting	Description
Port	Shows the number of the PoE port.
PoE Supported Shows whether the port supports PoE.	
Power Output	Shows whether PoE power output is on or off for the port.
Classification	Shows the PoE power classification of the port.
	Each PoE power classification has a different maximum power (in watts) by PSE output as follows:
	• 0 : 15.4 watts
	• 1: 4 watts
	• 2 : 7 watts
	• 3 : 15.4 watts
	• 4 : 30 watts
Current (mA)	Shows the amount of current (in mA) being supplied to the port.
Voltage (V)	Shows the voltage (in V) being used for the port.
Consumption (W)	Shows the power consumption (in W) of the device connected to the port.

UI Setting	Description
Device Type	Shows the device type of the device currently connected to the port.
	Not Present: There are no active connections to the port.
	 Legacy PoE Device: A legacy PD is connected to the port, and the device has detected that the voltage is too low or high, or the PD's detected capacitance is too high.
	802.3at: An IEEE 802.3at PD is connected to the port.
	802.3af: An IEEE 802.3af PD is connected to the port.
	NIC: A NIC is connected to the port.
	Unknown: An unknown PD is connected to the port.
	N/A: The PoE function is disabled.
Configuration	Shows configuration suggestions based on detected conditions.
Suggestion	 Disable PoE power output: A NIC or unknown PD was detected; you may want to disable PoE power output for the port.
	 Select Force Mode: A higher/lower resistance or higher capacitance was detected; you may want to select Force Mode for the port.
	 Select high power output: An unknown classification was detected; you may want to select High Power output.
	 Raise the external power supply voltage to greater than 46 VDC: When the external supply voltage is detected at less than 46 V, the system suggests raising the voltage.
	 Enable PoE function for detection: The system suggests enabling the PoE function.
	 Select IEEE 802.3at auto mode: When detecting an IEEE 802.3at PD, the system suggests selecting 802.3at Auto mode.
	• Select IEEE 802.3af auto mode : When detecting an IEEE 802.3af PD, the system suggests selecting 802.3af Auto mode.
PD Failure Check	Shows the results of the last PD failure check, if checking is enabled. Refer to <u>PD Failure Check</u> for more information.
	Disable: PD failure checking is not enabled for the port.
	Alive: The port is alive, and passed the last PD failure check.
	Not Alive: The port is not alive, and failed the last PD failure check.

Layer 2 Switching

Menu Path: Layer 2 Switching

This section lets you configure your device's Layer 2 switching features.

This section includes these pages:

- VLAN
- GARP
- MAC
- QoS
- Multicast

VLAN

A VLAN, or Virtual Local Area Network, is a logical grouping of devices on a network.

Assigning VLANs to Ports

VLANs must be assigned to ports to route traffic correctly. Now that you've created the VLANs, they need to be assigned to ports so that traffic from those ports will be routed over the correct VLAN. A similar procedure must be performed on each switch or router on the network.

- 1. Sign in to the device using administrator credentials.
- 2. Go to Layer 2 Switching→VLAN→Settings.
- 3. To assign the newly created VLAN ID to a port, find the port on the **Port Table** on the lower part of the page, and the click **[Edit]**.

Result: The **Edit Port Settings** panel appears.

4. Specify the **Mode** and **PVID** that will be assigned to the port, and then click **Apply**.

Tutorial Info:

Access mode is used when connecting single devices without tags. These are usually end-user devices that belong to a single VLAN, and do not need to communicate with devices in other VLANs.

Trunk mode allows a port to carry traffic for multiple VLANs over a single physical connection. This is useful for linking switches together that may have many different VLANs.

Hybrid mode is similar to a Trunk port, except users can explicitly assign tags to be removed from egress packets.

✓ Note

The port VID (PVID) setting will apply a VLAN tag only for untagged traffic coming through that port. If traffic going through the port has already been tagged with a VLAN ID, the PVID setting will not change the existing tag.

Result: The **Port Table** will show the new port configuration.

Creating VLANs

Create VLANs in preparation for assigning them to ports.

To create a VLAN, do the following:

- 1. Sign in to the device using administrator credentials.
- 2. Go to Layer 2 Switching > VLAN > Settings.
- 3. To add a VLAN ID, click **[Add]**.

Result: The **Create VLAN** screen appears.

- Specify the VLAN to create in the VID, and then click Create.Optionally:
 - o Type a human-readable identifier in the **Name** field
 - o Assign the VLAN to a **Member Port**. You also assign VLANs to ports later.

Result: The VLAN will appear on the VLAN table at the top of the page.

5. Repeat this process to create VLANs needed for the network topology.

What to do next: After you have created the VLANs needed for your topology, you can assign VLANs to ports if you have not done so already.

✓ Note

You can delete VLANs by choosing a VLAN ID from the VLAN table at the top of the page, clicking the checkbox, and then clicking [Delete].

VLANs in Depth

This technology allows network administrators to divide a large network into smaller, more manageable segments without the need for additional physical hardware. Devices within a VLAN can be located anywhere on the network but communicate as though they are on the same physical segment. This facilitates traffic management, as administrators can ensure traffic is directed only to devices within the same VLAN by assigning a VLAN tag to each Ethernet frame. Consequently, VLANs provide a means to segment a network beyond the constraints of physical connections, a limitation inherent in traditional network design. VLANs can be utilized to segment your network into various groups, such as:

- **Departmental groups**—One VLAN for the R&D department, another for Office Automation, etc.
- **Hierarchical groups**—One VLAN for directors, another for managers, and another for general staff.
- **Usage groups**—One VLAN for email users and another for multimedia users.

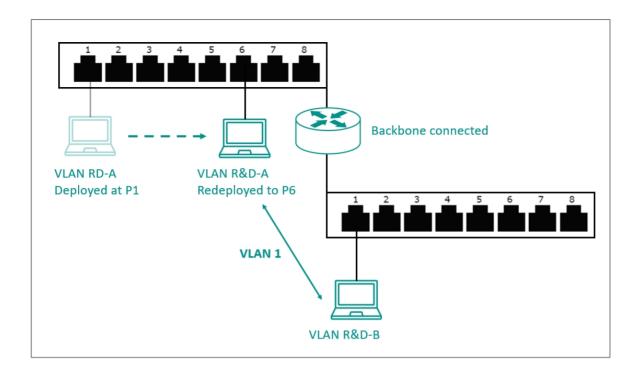
VLAN Standards and Implementation

The functioning of VLANs is guided by IEEE 802.1Q, often referred to as Dot1q. This standard outlines the protocol for VLAN tagging on Ethernet frames within an IEEE 802.3 Ethernet network. During the transmission of data between switches, VLAN tags identify the VLAN ownership of frames. Networking equipment reads these tags and ensures that tagged frames are delivered to devices within that VLAN, maintaining the network's logical segmentation.

A VLAN tag is a specific piece of data embedded in the header of an Ethernet frame. It comprises a 4-byte field carrying key information, such as the VLAN ID (VID) and priority level. The VID is a numerical identifier that uniquely links the frame to a specific VLAN.

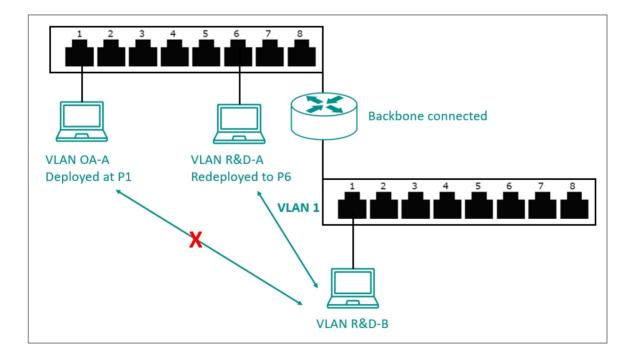
The priority field within the tag plays a critical role in prioritizing certain types of traffic within a VLAN. This structure contributes to effective network traffic management by giving precedence to certain data when necessary.

Benefits of VLANs


The main benefit of VLANs is that they provide a network segmentation system that is far more flexible than traditional networks. Using VLANs also provides you with three other benefits:

VLANs help control traffic

With traditional networks, congestion can be caused by broadcast traffic that is directed to all network devices, regardless of whether or not they need it. VLANs increase the efficiency of your network because each VLAN can be set up to contain only those devices that need to communicate with each other.


VLANs simplify device relocation

In traditional networks, administrators spend significant time managing moves and changes, requiring manual updates of host addresses when users switch sub-networks. In contrast, VLANs simplify this process. For example, when relocating a host from Port 1 to Port 6 in a different network section, simply assign Port 6 to the relevant VLAN (e.g., VLAN R&D A). This enables seamless communication between VLANs, eliminating the need for re-cabling.

VLANs provide extra security

Devices within each VLAN can only communicate with other devices on the same VLAN. If VLAN R&D B needs to communicate with VLAN OA(Office Automation) A, the traffic must pass through a routing device or Layer 3 switch.

✓ Note

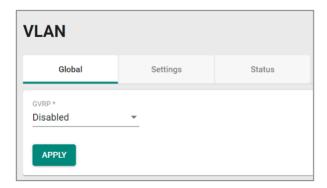
Network segmentation is not a substitute for network security. While network segmentation can provide a degree of isolation that contributes to the overall security environment, the primary benefit of VLANs is improved performance by ensuring minimal crosstalk between unrelated systems. Network segmentation should be complimented with network security procedures.

VLAN Settings

Menu Path: Layer 2 Switching > VLAN

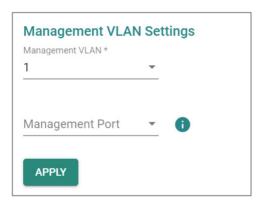
This page lets you view and configure your device's VLAN settings.

This page includes these tabs:


- Global
- Settings
- Status

VLAN - Global

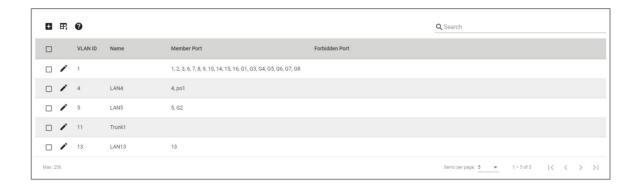
Menu Path: Layer 2 Switching > VLAN - Global


This page lets you configure the global VLAN settings.

GVRP Settings

UI Setting	Description	Valid Range	Default Value
GVRP	Enable or disable GVRP for the device.	Enabled / Disabled	Disabled
	MSTP and GVRP are both VLAN-related functions. When VLAN changes dynamically, MSTP needs to re-converge, which can make the system unstable due to running complex operations. When both MSTP and GVRP are used together, this can result in network instability. Therefore, it is recommended that network administrators avoid enabling both MSTP and GVRP.		

Management VLAN Settings


UI Setting	Description	Valid Range	Default Value
Management VLAN	Specify the management VLAN.	Drop-down list of VLANs	1
Management Port	Specify a management port for this device to allow for quick and easy configuration of VLAN settings.		N/A
	▲ Warning Make sure the computer you are using to configure the device is connected to the selected management port, or you may become disconnected from your device.		

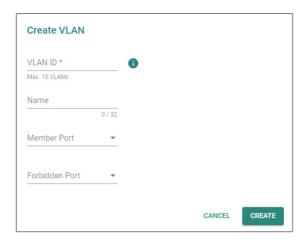
VLAN - Settings

Menu Path: Layer 2 Switching > VLAN - Settings

This page lets you configure VLANs and which ports they include.

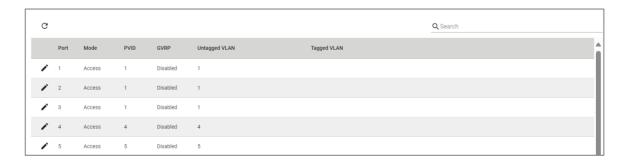
VLAN List

UI Setting	Description
VLAN ID	Shows the ID of the VLAN.
Name	Shows the name of the VLAN.
Member Port	Shows the member port(s) of the VLAN.
Forbidden Port	Shows the forbidden port(s) of the VLAN.


VLAN - Create VLAN

Menu Path: Layer 2 Switching > VLAN - Settings

Clicking the Add () icon for port on the Layer 2 Switching > VLAN - Settings page will open this dialog box. This dialog lets you to create VLAN.

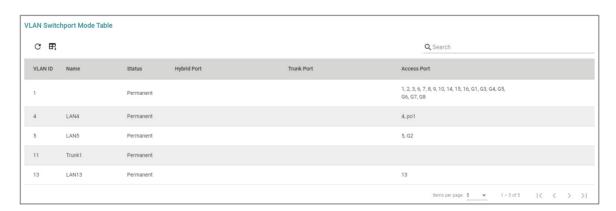

Click **CREATE** to save your changes.

Create VLAN

UI Setting	Description	Valid Range	Default Value
VLAN ID	Specify the VLAN ID.	1 to 4094	N/A
Name	Specify the name of the VLAN.	0 to 32 characters	N/A
Member Port	Specify the member port(s) of the specific VLAN.	Drop-down list of ports	N/A
Forbidden Port	Specify the forbidden port(s) of the specific VLAN.	Drop-down list of ports	N/A

VLAN Port Status List

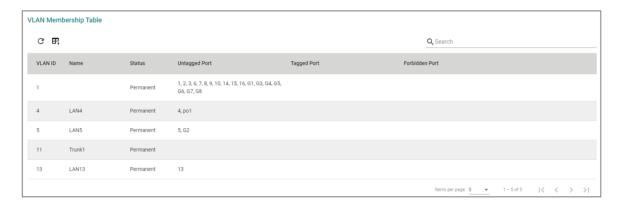
UI Setting	Description
Port	Shows the port number.


UI Setting	Description	
Mode	Shows the mode of the port.	
	 Access: The port is connected to a single device, without tags. 	
	 Trunk: The port is connected to another 802.1Q VLAN aware switch. 	
	 Hybrid: The port is connected to another Access 802.1Q VLAN aware switch or another LAN that combines tagged and/or untagged devices. 	
PVID	Shows the default VLAN ID for untagged devices connected to the port.	
	The PVID will be added for ingress traffic, and will be removed for egress traffic for the access port only.	
GVRP	Shows whether GVRP is enabled for the port.	
Untagged VLAN	When the port is using Hybrid VLAN mode, this shows all VLAN IDs that will be removed from egress packets.	
Tagged VLAN	When the port is using Trunk or Hybrid VLAN mode, this shows all VLAN IDs will be carried to connected devices.	

VLAN - Status

Menu Path: Layer 2 Switching > VLAN - Status

This page lets you monitor the status of the VLANs on your device.


VLAN Switchport Mode Table

UI Setting	Description
VLAN ID	Shows the ID of the VLAN.
Name	Shows the name of the VLAN.

UI Setting	Description
Status	Shows the status of the VLAN.
Hybrid Port	Shows ports acting as a Hybrid Port for the VLAN.
Trunk Port	Shows ports acting as a Trunk Port for the VLAN.
Access Port	Shows ports acting as an Access Port for the VLAN.

VLAN Membership Table

UI Setting	Description
VLAN ID	Shows the ID of the VLAN.
Name	Shows the name of the VLAN.
Status	Shows the status of the VLAN.
Untagged Port	Shows the untagged port(s) for the VLAN.
Tagged Port	Shows the tagged port(s) for the VLAN.
Forbidden Port	Shows the forbidden port(s) for the VLAN.

GARP

Generic Attribute Registration Protocol (GARP) is a communication protocol defined by IEEE 802.1 that offers a generic framework for bridges to register and de-register an attribute value.

In a VLAN structure, two GARP applications can be applied:

- **GARP VLAN Registration Protocol (GVRP)** is used to register VLAN trunking between multilayer switches.
- **GARP Multicast Registration Protocol (GMRP)** provides a constrained multicast flooding facility.

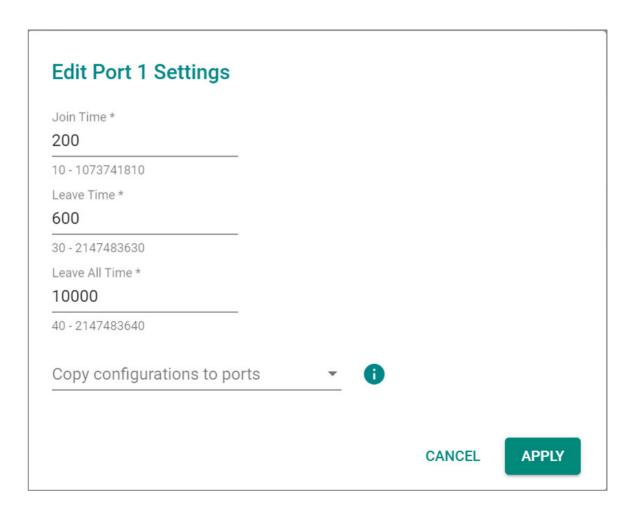
GARP Settings

Menu Path: Layer 2 Switching > GARP

This page lets you configure GARP settings on each port.

GARP List

	Port	Join Time	Leave Time	Leave All Time
<i>j</i>	1	200	600	10000
j	2	200	600	10000
j	3	200	600	10000
j	4	200	600	10000
j	5	200	600	10000
j	6	200	600	10000


UI Setting	Description
Port	Shows which port the entry is for.
Join Time (sec.)	Shows the join time for the port.
Leave Time (sec.)	Shows the leave time for the port.
Leave All time (sec.)	Shows the leave all time for the port.

GARP - Edit Port Settings

Menu Path: Layer 2 Switching > GARP

Clicking the **Edit** () icon for a port on the **Layer 2 Switching > GARP** page will open this dialog box. This dialog lets you configure the GARP parameters for each port.

Click **APPLY** to save your changes.

UI Setting	Description	Valid Range	Default Value
Join Time (sec.)	Specify the join time in seconds.	10 to 499999980	200
Leave Time (sec.)	Specify the leave time in seconds.	30 to 499999980	600
Leave All time (sec.)	Specify the leave all time in seconds.	30 to 499999990	10000
Copy configurations to ports	Select the ports you want to copy this configuration to.	Drop-down list of ports	N/A

MAC

Menu Path: Layer 2 Switching > MAC

This section lets you configure **Static Unicast** and the **MAC Address Table**.

This section includes these pages:

- Static Unicast
- MAC Address Table

Static Unicast

Static Unicast lets you manually define specific forwarding paths for data packets destined for particular devices on the network.

Static Unicast

Menu Path: Layer 2 Switching > MAC > Static Unicast

This page lets you manage your device's static unicast entries.

O Limitations

You can create up to 256 static unicast entries.

Unicast Table

UI Setting	Description
VLAN ID	Shows the VLAN ID used for the static unicast entry.
MAC Address	Shows the MAC address used for the static unicast entry.
Port	Shows which ports are included for the static unicast entry.

Add a Static Unicast Entry

Menu Path: Layer 2 Switching > MAC > Static Unicast

Clicking the Add () icon on the Layer 2 Switching > MAC > Static Unicast page will open this dialog box. This dialog lets you add a new static unicast entry.

Click **CREATE** to save your changes and add the new entry.

UI Setting	Description	Valid Range	Default Value
VLAN ID	Specify the VLAN ID.	Drop-down list of VLAN IDs	N/A
MAC Address	Specify the static unicast MAC address of the port.	Valid unicast MAC address	N/A
Port	Specify which ports you want to include in the static unicast group	Drop-down list of ports	N/A

MAC Address Table

The MAC address table is a database maintained on your device that acts like a directory to keep track of all the devices currently connected to the network. Each entry in the table includes a device's unique identifier, known as its Media Access Control (MAC) address, and the specific switch port it is connected to.

✓ Note

Moxa devices manage MAC address learning for VLANs using IVL (Independent VLAN Learning), which uses separate MAC address tables for each VLAN so that MAC address learning for different VLANs do not interfere with each other.

A MAC table will be stored in the format of MAC + VID. This allows the same MAC address to be used in multiple VLANs without causing forwarding issues.

This may lead to a larger MAC address table size, as each VLAN maintains its own individual address table, and the number of MAC address entries will increase based on the number of VLAN member ports used.

MAC Address Table

Menu Path: Layer 2 Switching > MAC > MAC Address Table

This page lets you view your device's MAC address table and set the aging time for MAC address entries.

O Limitations

The MAC address table can hold up to 16384 entries.

MAC Address Settings

UI Setting	Description	Valid Range	Default Value
MAC Learning Mode	Shows the current MAC learning mode.	N/A	Independent VLAN Learning
Aging Time	Specify the aging time for MAC address entries in seconds. The aging time determines how long entries will be kept in the MAC address table in the device's memory before expiring.	10 to 300	300

Click APPLY to save your changes.

MAC Address Table List

UI Setting	Description
Index	Shows the index number of the MAC address.
VLAN ID	Shows which VLAN ID is being used for the MAC address.

UI Setting	Description
MAC Address	Shows the MAC address of the device.
Туре	Shows what kind of MAC address entry this is: Learnt Unicast: Used for all learnt unicast MAC addresses. Learnt Multicast: Used for all learnt multicast MAC addresses.
	Static Unicast: Used for all static unicast MAC addresses. Static Multicast: Used for all static multicast MAC addresses.
Port	Shows which port on the device the MAC address is connected to.

QoS

Quality of Service (QoS) is a set of techniques and mechanisms used in computer networks to prioritize certain types of traffic, ensure reliable delivery of data, and optimize network performance. QoS mechanisms allow network administrators to define policies and rules for managing network resources and controlling the flow of traffic based on factors such as traffic type, application requirements.

Moxa's switches offer the following features to accomplish QoS objectives:

- Classification
- Ingress Rate Limit
- Scheduler
- · Egress Shaper

How each QoS feature works

The switch provides Quality of Service (QoS) to your network by making data delivery more reliable. The traffic can be classified by applying IEEE 802.1p/1Q layer 2 CoS (Class of Service) tags, and even layer 3 DSCP (Differentiated Services Code Point) information and the switch can inspect both IEEE 802.1p/1Q layer 2 CoS tags, and DSCP information and prioritize traffic on your network to ensure that high priority data is transmitted with minimum delay. Traffic can be controlled by a set of rules to obtain the required Quality of Service for your network. The rules define different types of traffic and specify how

each type should be treated as it passes through the switch. For more detailed explanation to the feature of **Classification**, please refer to feature-map Classification.

Two scheduling algorithms, Strict Priority and Weighted Round Robin, are available to empower network administrators to choose the most suitable method for packet transmission in their field applications. For more detailed explanation to the feature of **Scheduler**, please refer to feature-map Scheduler.

In addition to packet classification for incoming packets and scheduling for outgoing packets, users can also establish a threshold for incoming data rates. When this limit is exceeded, they can choose to either drop or remark the packet. For more detailed explanation of the feature of **Ingress Rate Limit**, please refer to feature-map Ingress Rate Limit.

Or leveraging the egress shaper feature to optimize outbound traffic, maintain network stability, and ensure efficient utilization of available bandwidth resources. For more detailed explanation of the feature of **Egress Shaper**, please refer to feature-map Egress Shaper.

The switch's QoS capability improves the performance and determinism of industrial networks for mission-critical applications.

QoS

Menu Path: Layer 2 Switching > QoS

This section lets you enable and configure your device's QoS settings.

This section includes these pages:

- Classification
- Ingress Rate Limit
- Scheduler
- Egress Shaper

✓ Note

For MX-NOS platform devices, QoS behavior will be consistent as long as the chipset solutions are the same. Therefore, RKS/MDS/TN devices will exhibit identical QoS behavior.

Classification

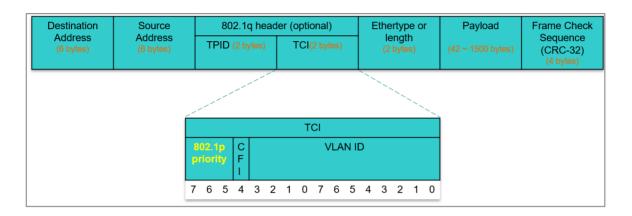
Traffic classification allows you to classify data for prioritization so that time-sensitive and system-critical data can be transferred smoothly and with minimal delay over a network.

Benefits of using traffic classification and prioritization include:

- Improving network performance by controlling a wide variety of traffic and managing congestion
- Assigning priorities to different categories of traffic, such as setting higher priorities for time-critical or mission-critical applications
- Providing predictable throughput to improve the performance of multimedia applications-such as video conferencing or voice over IP-to minimize traffic delay and jitter
- Optimizing network utilization depending on application usage and usage needs, allowing the amount of traffic to increase without requiring increases in backbone bandwidth

Traffic classification/prioritization uses eight traffic queues to ensure that higher priority traffic can be forwarded separately from lower priority traffic to help guarantee quality of service (QoS) for your network.

Traffic classification/prioritization for your Moxa device is based on two standards:


- IEEE 802.1p Class of Service: A Layer 2 QoS marking scheme
- **Differentiated Services (DiffServ) Traffic Marking:** A Layer 3 QoS marking scheme

How IEEE 802.1p Class of Service (CoS) works

The IEEE Std 802.1D 2005 Edition marking scheme, which is an enhancement to IEEE Std 802.1D, enables Quality of Service on the LAN. Traffic service levels are defined in the IEEE 802.1Q 4-byte tag, which is used to carry VLAN identification as well as IEEE 802.1p priority information. If the 802.1q header presents and the Tag Protocol Identifier

(TPID) value is 0x8100, then it means the frame is tagged. The TPID is followed by a 2-byte field Tag Control Information (TCI) which contains a 3-bit 802.1p priority field as shown in below figure.

The IEEE Std 802.1D 2005 Edition priority marking scheme assigns an IEEE 802.1p priority level between 0 and 7 to each frame, which specifies the level of service that the associated packets shall be handled.

The table below shows an example of how different traffic types can be mapped to the eight IEEE 802.1p priority levels.

IEEE 802.1p Priority (decimal)	IEEE 802.1p Priority (binary)	IEEE 802.1D Traffic Type
0	0 0 0	Best Effort
1	0 0 1	Background (lowest priority)
2	0 1 0	Reserved
3	0 1 1	Excellent Effort (business critical)
4	100	Controlled Load (streaming multimedia)
5	101	Video (interactive media)
6	1 1 0	Voice (interactive voice)
7	111	Network Control Reserved traffic

Even though the IEEE 802.1p standard is the most widely used prioritization scheme for LAN environments, it still has some restrictions:

- It requires an additional 4-byte tag in the frame, which is normally optional for Ethernet networks. Without this tag, the scheme cannot work.
- The tag is part of the IEEE 802.1Q header, so to implement QoS at layer 2, the entire network must implement IEEE 802.1Q VLAN tagging.
- It is only supported within a LAN and does not cross the WAN boundaries, since the IEEE 802.1Q tags will be removed when the packets pass through a router.

How Differentiated Services (DiffServ) Traffic Marking works

DiffServ is a Layer 3 marking scheme that uses the DiffServ Code Point (DSCP) field in the IP header to specify the packet priority. DSCP is an advanced intelligent method of traffic marking that allows you to choose how your network prioritizes different types of traffic. The DSCP field can be set from 0 to 63 to map to user-defined service levels, enabling users to regulate and categorize traffic by applications with different service levels.

The advantages of DiffServ over IEEE 802.1Q are as follows:

- You can prioritize and assign different traffic with appropriate latency, throughput, or reliability by each port.
- No extra tags are required.
- The DSCP priority tags are carried in the IP header, which can pass the WAN boundaries and through the Internet.
- DSCP is backwards compatible with IPv4 ToS (Type of Service), which allows operation with legacy devices that use IPv4 layer 3.

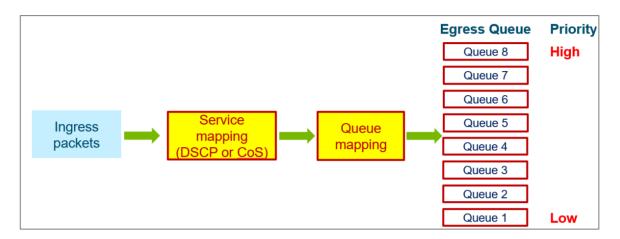
Default mapping of DSCP and CoS values:

DSCP values	Mapped CoS value
0 to 7	0
8 to 15	1
16 to 23	2
24 to 31	3
32 to 39	4

DSCP values	Mapped CoS value
40 to 47	5
48 to 55	6
56 to 63	7

Traffic Prioritization

Moxa switches classify traffic based on layer 2 of the OSI 7 layer model, and the switch prioritizes outbound traffic according to the priority information defined in the received packet. Incoming traffic is classified based upon the IEEE 802.1p service level field and is assigned to the appropriate egress priority queue. The traffic flow through the switch is as follows:


- A packet received by the Moxa switch may or may not have an 802.1p tag
 associated with it. If it does not, then it is given a default CoS value (according to
 the port settings in the classification section).
- Each egress queue has associated 802.1p priority levels, and can be defined by users, the packet will be placed in the appropriate priority queue. When the packet reaches the head of its queue and is about to be transmitted, the device determines whether or not the egress port belongs to the VLAN group. If it is, then the new 802.1p tag is used in the extended 802.1D header.

Please be aware that the priority of redundancy protocol control packets is determined by the switch and is not influenced by the user's QoS settings. The prioritization of traffic is determined by the QoS policies configured on network devices, and it remains consistent regardless of whether the interface is a single port or a trunk port.

Traffic Queues

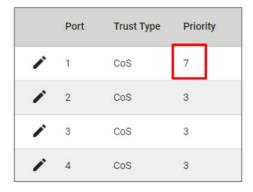
The hardware of Moxa switches has eight different traffic queues that allow packet prioritization to occur. The priority of these queues ranges from 1 (lowest priority) to 8 (highest priority). Higher priority traffic can pass through the Moxa switch without being delayed by lower priority traffic. Ingress packets containing DSCP or CoS fields require classification and mapping to a priority queue. Incoming packets with a specified DSCP

value at layer 3 are remapped to a CoS value at layer 2 before being directed to the egress traffic queue. The corresponding mapping of DSCP to CoS and the CoS to the egress priority queue priority should be preconfigured on a Moxa switch. As each packet arrives in the Moxa switch, it undergoes ingress processing (which includes classification, marking/re-marking), and is then sorted into the appropriate egress queue.

Packets lacking DSCP or CoS values will be directed to the appropriate egress queue based on the settings of "Untag Default Priority" configured in "Port Settings." (menureference Port Classification - Edit Port Setting).

Mark egress packets with a CoS value when the ingress is an untagged packet

For devices connected to a switch lacking the ability to insert the priority code into the 802.1q tagged packet, the switch can be configured to mark egress packets with a specified CoS value, thus ensuring priority along the subsequent transmission path.


In this task, we will instruct how to configure the switch to assign a CoS value of 7 to egress packets on port 2 when ingress packets from port 1 are untagged.

Before you begin:

- Create a new VLAN ID = 10.
- Configure Port 1 with PVID = 10 and "Access" mode is enabled.
- Configure Port 2 with PVID = 1 and "Trunk" mode is enabled, tagged VLAN = 10.
- 1. Sign in to the switch using administrator credentials.
- 2. Go to Layer 2 Switching→ QoS→ Classification
- 3. Go to **Port Settings** tab.

- 4. Click adjacent to Port 1 to open a dialog to edit Port 1 settings.
- 5. Click a drop-down list of field **Untag Default Priority** and select **7**.
- 6. Click **Apply** to take effect.

Result:

Results:

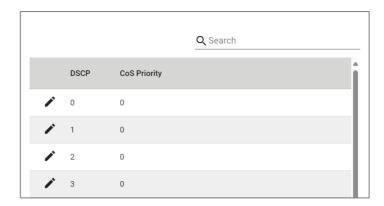
When a device connected to port 1 sends out untagged packets, the switch will mark a CoS value of 7 to egress packets on port 2.

Classification

Menu Path: Layer 2 Switching > QoS > Classification

This page lets you configure your device's QoS classifications.

This page includes these tabs:


- DSCP Mapping
- CoS Mapping
- Port Settings

DSCP Mapping

Menu Path: Layer 2 Switching > QoS > Classification - DSCP Mapping

This page lets you view and edit your DSCP CoS mappings.

DSCP Mapping List

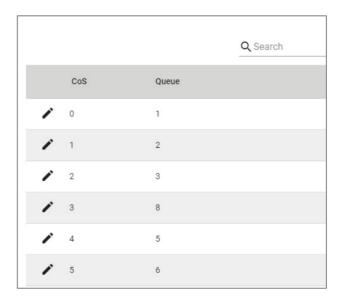
UI Setting	Description
DSCP	Shows the DSCP value for the entry.
CoS Priority	Shows the CoS priority mapped to the DSCP value.

Edit DSCP Settings

Menu Path: Layer 2 Switching > QoS > Classification - DSCP Mapping

Clicking the **Edit** () icon for an entry on the **Layer 2 Switching > QoS > Classification - DSCP Mapping** page will open this dialog box. This dialog lets you edit CoS priority for a DSCP value.

Click **APPLY** to save your changes.

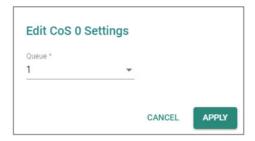

UI Setting	Description	Valid Range	Default Value
CoS Priority	Specify the CoS priority to assign to the DSCP value. Higher numbers have higher priority.	0 to 7	DSCP 0 to 7: 0
			DSCP 8 to 15: 1
			DSCP 16 to 23: 2
			DSCP 24 to 31: 3
			DSCP 32 to 39: 4
			DSCP 40 to 47: 5
			DSCP 48 to 55: 6
			DSCP 56 to 63: 7

CoS Mapping

Menu Path: Layer 2 Switching > QoS > Classification - CoS Mapping

This page lets you view and edit your CoS Queue mappings.

CoS Mapping List

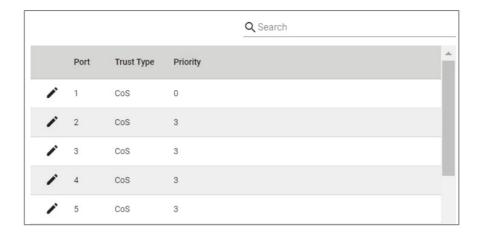

UI Setting	Description
CoS	Shows the CoS value for the entry.
Queue	Shows the queue mapped to the CoS value.

Edit CoS Settings

Menu Path: Layer 2 Switching > QoS > Classification - CoS Mapping

Clicking the **Edit** () icon for a CoS value on the **Layer 2 Switching > QoS > Classification - CoS Mapping** page will open this dialog box. This dialog lets you map a queue to a CoS value.

Click **APPLY** to save your changes.

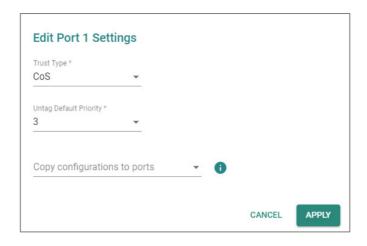

UI	Description	Valid	Default
Setting		Range	Value
Queue	Select a queue to map to the CoS value. Queues with higher numbers have higher priority.	1 to 8	CoS 0: 1 CoS 1: 2 CoS 2: 3 CoS 3: 4 CoS 4: 5 CoS 5: 6 CoS 6: 7 CoS 7: 8

QoS - Port Settings

Menu Path: Layer 2 Switching > QoS > Classification - Port Settings

This page lets you manage the trust type and CoS value for untagged packets on a perport basis.

Port Settings List


UI Setting	Description
Port	Shows the port number for the entry.
Trust Type	Shows the trust type used to classify traffic for the port.
Priority	Shows the CoS value to use for untagged packets for the port.

QoS - Edit Port Settings

Menu Path: Layer 2 Switching > QoS > Classification - Port Settings

Clicking the **Edit** () icon for a port on the **Layer 2 Switching > QoS > Classification** - **Port Settings** page will open this dialog box. This dialog lets you edit the trust type and priority for a specific port.

Click **APPLY** to save your changes.

UI Setting	Description	Valid Range	Default Value
Trust Type	Select the trust type used to classify traffic for the port.	CoS / DSCP	CoS
Untag Default Priority	Specify a CoS value to use for untagged packets for the port. Higher values will have higher priority.	0 to 7	3
Copy configurations to ports	Select the ports you want to copy this configuration to.	Drop-down list of ports	N/A

Configuring Ingress Rate Limits

Ingress rate limits drop—or "mark"—network traffic when it exceeds user-defined thresholds.

Introduction to Ingress Rate Limits

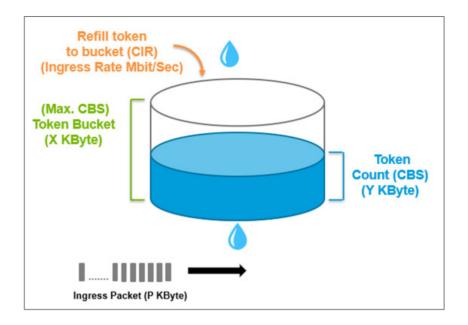
There are two elements to this process:

- Meter An algorithm in the switch that monitors and limits traffic by applying QoS markers to data packets or dropping them entirely
- Marker The DSCP/802.1p field of data packets is assigned a value or "marked" by the QoS policies, determining their handling in the network

Meter algorithms include simple token bucket and SrTCM (Single Rate Three Color Marker) (RFC2697).

In addition to ingress rate management, the switch also offers an option for the administrators to configure the shutdown of an Ethernet port that may be under attack from an excess of incoming packets, such as a Denial-of-Service attack.

About Port Shutdown


Ports can be shutdown to avoid broadcast storms.

In general, any user shall not consume unlimited bandwidth and influence others' access. One particular scenario is that a malfunctioning switch or mis-configured network might cause "broadcast storms". Moxa industrial Ethernet switches not only prevent broadcast storms, but can also regulate ingress packet rates, giving administrators full control of their limited bandwidth to prevent undesirable effects caused by unpredictable faults.


The network administrator has the option to establish a maximum throughput threshold (in Mbps) for incoming packets on a designated port and activate this function. If unexpected ingress packets are detected on that port, the physical Ethernet port will be disabled, preventing further packet transmission. Re-activation of the port can be done manually or left to occur automatically after the pre-defined release interval, specified in minutes, has elapsed.

About Token Buckets

Token Bucket is an algorithm used to achieve an efficient network flow control and manage bandwidth. This algorithm is based on a token bucket that allows for a traffic surge for short periods. When a token is unavailable, no burst of packets can be sent. Under this concept, the number of tokens will be refilled in the bucket at specific intervals. Users need to configure these settings so that the tokens in the bucket are always available to ensure packets can be sent when necessary.

CAR (Committed Access Rate) is a traffic control mechanism used to ensure that packets meet the network rules before they enter the network. CAR can guarantee the traffic flow is under user-defined control; the packets exceeding the rule will be either dropped or remarked and transmitted again. When network traffic is jammed, these packets will be dropped first.

Token Bucket is an algorithm that is demonstrated as a container in the image below. The token can be seen as a marker to mark a packet that is allowed to be transmitted through this switch. When the token is flowing into the bucket, the length of the bucket will be consumed as the volume of the bucket is limited. When the volume of the bucket is insufficient, some packets will be dropped or remarked and transmitted again. This

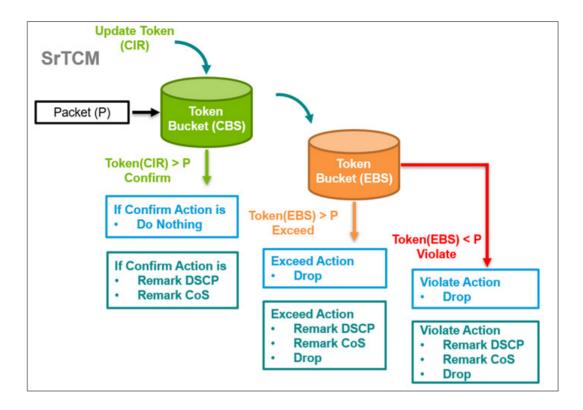
algorithm can control the speed of the traffic flow by consuming the speed of the token in the bucket.

About Single Rate Three Color Markers

Single Rate Three Color Markers (SrTCM) is a policing scheme for ingress rate limits.

Traffic marking is based on a Committed Information Rate (CIR) and two associated burst sizes:

- Committed Burst Size (CBS)
- Excess Burst Size (EBS)


A packet is marked green if it does not exceed the CBS, yellow if it does exceed the CBS, but not the EBS, and red otherwise.

SrTCM will categorize the ingress packet by its length, and mark it as one of three colors:

- **Green:** performs the "conform" action. It could be "Do nothing", "Remark DSCP" or "Remark CoS". The Token Bucket (CBS) will deduct corresponding tokens.
- **Yellow:** performs the "exceed" action. It could be "Drop", "Remark DSCP" or "Remark CoS". The Token Bucket (EBS) will deduct corresponding tokens.
- **Red:** performs the "violate" action. It could be "Drop", "Remark DSCP" or "Remark CoS".

If you select "Do nothing" as the conform action, then "Drop" will be the only action when it enters the Exceed or Violate state.

The SrTCM is useful for ingress policing of a service, where only the length, not the peak rate, of the burst determines service eligibility.

Dropping Limit-exceeding Incoming Packets

You can setup the ingress rate limits that will automatically drop packets exceeding limits you specify.

In this example, we will prevent the switch from being overwhelmed by unexpected large amount of ingress packets through port 1, set an ingress rate limit of 5 Mbps on port 1. Then, verify that the device connected to port 2 receives packets at no more than 5 Mbps.

Before you begin:

- Change the configuration mode to **Advanced** mode by selecting the mode in the upper right corner of the UI.
- Create a new **VLAN ID** with a value of **10**
- Configure Port 1 with a **PVID** of 10 and with **Access mode** enabled
- Configure Port 2 with a PVID of 10 and with Access mode enabled
- 1. Sign in to the device using administrator credentials.
- 2. Go to Layer 2 Switching→QoS→Ingress Rate Limit→General.

3. Click [Edit] corresponding to Port 1.

Result: The **Edit Port Settings** dialogue appears.

4. In the Ingress Rate (CIR) field, specify 5 Mbps, and then click Apply.

Result: The new Ingress Rate (CIR) will appear in the table.

Results:

When a device connected to port 1 sends out a large number of packets (for example, at a rate exceeding 10 Mbps), the switch will throttle the incoming packets to match the configured limit (5 Mbps in this example) before forwarding them to port 2.

Remarking Limit-exceeding Incoming Packets

Abstract:

Short Description: You can setup the ingress rate limits that will automatically remark packets exceeding limits you specify.

In this example, we will limit incoming packets to 5 Mbps on Port 1—maintaining a consistent ingress rate. To avoid dropping data caused by a sudden influx of packets from Port 1, the outgoing packets will be remarked with a DSCP value (0x07) before sending over Port 2.

Before you begin:

- Change the configuration mode to **Advanced** mode by selecting the mode in the upper right corner of the UI.
- Create a new VLAN ID with a value of 10
- Configure Port 1 with a PVID of 10 and with Access mode enabled
- Configure Port 2 with a **PVID** of 10 and with **Access mode** enabled
- 1. Sign in to the device using administrator credentials.
- 2. Go to Layer 2 Switching→QoS→Ingress Rate Limit→General.
- 3. Click [Edit] corresponding to Port 1.

Result: The **Edit Port Settings** dialogue appears.

4. Specify the following:

Value	Option
Туре	Simple Token Bucket
Ingress Rate (CIR)	5 Mbps
Conform Action	Remark DSCP
Conform Action > Remark Value	0
Violate Action	Remark DSCP
Violate Action > Remark Value	7

5. Click **Apply** to save changes.

Results:

When a device connected to port 1 sends out a large number of packets (for example, at a rate exceeding 10 Mbps), the switch will throttle the incoming packets to match the configured limit (5 Mbps in this example) and remark DSCP value (0x07) without dropping the packets. This ensures the timely transmission of data to the device connected on port 2.

Ingress Rate Limit

Menu Path: Layer 2 Switching > QoS > Ingress Rate Limit

This page lets you configure your device's QoS ingress rate limit.

This page includes these tabs:

- General
- Port Shutdown

Ingress Rate Limit - General

Menu Path: Layer 2 Switching > QoS > Ingress Rate Limit - General

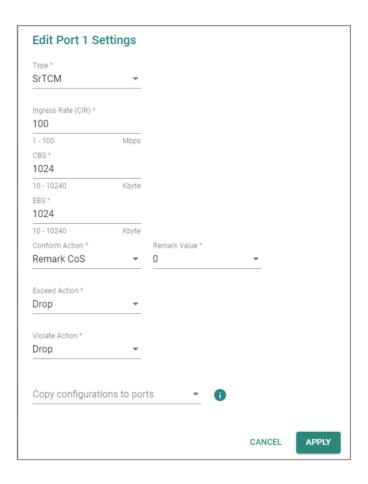
This page lets you view and edit the ingress rate limit for each port.

Ingress Rate Limit List

✓ Note

Some fields are only visible when using Advanced Mode.

								Q Search		
	Port	Туре	Ingress Rate (CIR)	CBS	EBS	Mode	Conform Action	Exceed Action	Violate Action	
<i>/</i>	1	Simple Token Bucket	100	1024			Do Nothing		Drop	
•	2	Simple Token Bucket	100	1024			Do Nothing	-	Drop	
<i>></i>	3	Simple Token Bucket	100	1024			Do Nothing		Drop	
•	4	Simple Token Bucket	100	1024			Do Nothing		Drop	
<i>></i>	5	Simple Token Bucket	100	1024			Do Nothing		Drop	
•	6	Simple Token Bucket	100	1024			Do Nothing		Drop	


UI Setting	Description
Port	Shows the port number for the entry.
Туре	Shows the ingress limit type for the port.
Ingress Rate (CIR)	Shows the ingress Committed Information Rate (CIR) value for the port.
CBS	Shows the ingress Committed Burst Size (CBS) value for the port.
EBS	Shows theingress Excess Burst Size (EBS) value for the port.
Mode	Shows the meter mode for the port.
	Note Currently, only color-blind mode is supported for metering.
Conform Action	Shows the conform action for the port.
Exceed Action	Shows the exceed action for the port.
Violate Action	Shows the violate action for the port.

Ingress Rate Limit - Edit Port Settings

Menu Path: Layer 2 Switching > QoS > Ingress Rate Limit - General

Clicking the **Edit** () icon for a port on the **Layer 2 Switching > QoS > Ingress Rate Limit - General** page will open this dialog box. This dialog lets you select the traffic policy and configure associated actions for specific conditions on a per-port basis.

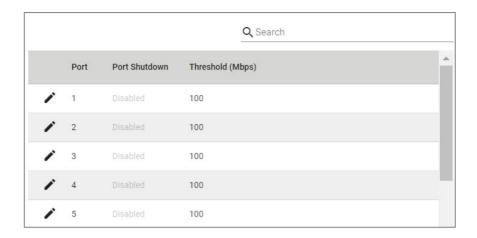
Click **APPLY** to save your changes.

UI Setting	Description	Valid Range	Default Value
Туре	Specify the ingress limit type to use.	Simple Token Bucket / SrTCM	Simple Token Bucket
Ingress Rate (CIR)	Specify the maximum bandwidth allowed for ingress through the port in Mbps.	1 to 1000	100 for Fast Ethernet ports, 1000 for Gigabit Ethernet ports

UI Setting	Description	Valid Range	Default Value
CBS (Committed Burst Size)	Specify the data buffer size in KB for the port that can be used when the data rate exceeds the CIR rate. Data that exceeds the CIR rate will be saved in this buffer, and will be sent when bandwidth is available.	0 to 10240	1024
EBS (Excess Burst Size) (if Type is SrTCM)	Specify the data buffer size in KB for the port when the data rate exceeds the CIR rate. Data that exceeds the CIR rate will be saved in the CBS buffer, and if the CBS buffer is full, data will be stored in the EBS buffer and will be sent when bandwidth is available.	0 to 10240	1024
Conform Action	Select a conform action for the port to take. If Remark CoS or Remark DSCP is selected, an additional input field will appear where a Remark value must be specified.	Do Nothing / Remark CoS / Remark DSCP	Do Nothing
Exceed Action (if Type is SrTCM)	 Select an action to take if the amount of data exceeds both the CBS and EBS buffers. Drop: Packets marked as yellow will be dropped. Remark CoS: Specify a CoS Remark value to use if a packet is marked as yellow. This is only available if Remark CoS is selected for the Conform Action. Remark DSCP: Specify a DSCP Remark value to use if a packet is marked as yellow. This is only available if Remark DSCP is selected for the Conform Action. 	Drop / Remark CoS / Remark DSCP	Drop
Violate Action	 Select an action to take if a packet violates CIR and CBS. Drop: Packets marked as violated will be dropped. Remark CoS: Specify a CoS Remark value to use if a packet is marked as violated. This is only available if Remark CoS is selected for the Conform Action. Remark DSCP: Specify a DSCP Remark value to use if a packet is marked as violated. This is only available if Remark DSCP is selected for the Conform Action. 	Drop / Remark CoS / Remark DSCP	Drop
Copy configurations to ports	Select the ports you want to copy this configuration to.	Drop-down list of ports	N/A

Port Shutdown

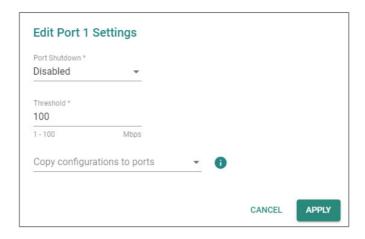
Menu Path: Layer 2 Switching > QoS > Ingress Rate Limit - Port Shutdown


This page lets you enable the port shutdown feature and configure its settings for each port.

Port Shutdown Settings

UI Setting	Description	Valid Range	Default Value
Port Shutdown	 Note After enabling this, you will still need to configure port shutdown for each port you want to use the feature with. 	Enabled / Disabled	Disabled
Release Interval	Specify how long in minutes to wait before a shut down port is enabled again. 0 means if this port is shut down, it will remain shut down until manually enabled.	0 to 10080	60

Port Shutdown List


UI Setting	Description
Port	Shows the port number for the entry.
Port Shutdown	Shows if port shutdown is enabled or disabled for the port.
Threshold (Mbps)	Shows the threshold in Mbps required to trigger port shutdown for the port.

Port Shutdown - Edit Port Settings

Menu Path: Layer 2 Switching > QoS > Ingress Rate Limit - Port Shutdown

Clicking the **Edit** () icon for an port on the **Layer 2 Switching > QoS > Ingress Rate Limit - Port Shutdown** page will open this dialog box. This dialog lets you configure the threshold to trigger port shutdown.

Click **APPLY** to save your changes.

UI Setting	Description	Valid Range	Default Value
Port Shutdown	Enable or disable port shutdown for this port.	Enabled / Disabled	Disabled
Threshold	Specify the threshold (Mbps) required to trigger a port shutdown.	Fast Ethernet ports: 1 to 100	Fast Ethernet ports: 100
		Gigabit Ethernet ports: 1 to 1000	Gigabit Ethernet ports: 1000
Copy configurations to ports	Select the ports you want to copy this configuration to.	Drop-down list of ports	N/A

About Scheduler

The Scheduler functions as an arbiter within the switching forwarding paths, prioritizing traffic flows based on user-defined criteria. This mechanism enhances data transmission efficiency and ensures that critical packets are transmitted with priority. Moxa devices support two scheduling algorithms: Strict Priority and Weighted Round Robin.

- **Weighted Round Robin:** The Weighted Round Robin type allows users to give priority to specific packets in the higher weighted queue to ensure those packets will be sent first. Moxa switches now have 8 queues, and the weights from highest to lowest are 8:8:4:4:2:2:1:1.
- **Strict:** The Strict Priority type allows users to determine to transmit packets in the highest priority queue first, while packets with lower priority will be transmitted later. This guarantees that traffic with the highest level of priority for data transmission will go first.

Moxa network devices are equipped with multiple traffic queues that enable packet prioritization. This allows higher-priority traffic to pass through the network devices without being delayed by lower-priority traffic. As each packet enters the network devices, it undergoes ingress processing, including classification and marking/remarking, before being placed into the appropriate egress queue. The network device then forwards packets based on their assigned queue.

Scenario: Configuring 3 Devices with Strict Priority

In this scenario, we will configure three attached devices on the network device with strict priority.

Specifically, we will focus on how packets are managed as they leave (egress) the network device on a particular port. In this case, the setup involves three devices:

- **Device A**: Connected to port 1 on the network device.
- **Device B**: Connected to port 2 on the network device.
- **Device C**: Connected to port 3 on the network device.

Objective

The goal is to configure a "Strict Priority" scheduler on port 3 of the switch. This scheduler will control how packets are prioritized when they exit the switch from this port (which is connected to Device C).

Key Components

1. DSCP (Differentiated Services Code Point) Value:

- This is a field in the IP header that indicates the level of priority a packet should have.
- In this scenario, packets from Device A have a DSCP value of 0x48, which signifies they should be treated with higher priority.

2. Egress Queues:

- Network switches typically have multiple egress queues per port. Each queue can be assigned different levels of priority.
- In this case, queue 7 is configured as a high-priority queue, while queue 1 is a lower-priority queue.

Configuration Details

- **Device A (port 1)** is sending packets with a DSCP value of 0x48. These packets are mapped to egress queue 7 on port 3. Queue 7 is given a higher priority.
- **Device B (port 2)** is sending normal packets without any special DSCP value, so these packets are mapped to egress queue 1 on port 3. Queue 1 has a lower priority.

"Strict Priority" Scheduler

- **Strict Priority Scheduling** is a mechanism used to determine how packets are sent out when multiple queues have packets waiting to be transmitted.
- In a strict priority setup, the switch will always service higher-priority queues first.
 This means that as long as there are packets in queue 7 (the high-priority queue),
 they will be sent out before any packets in queue 1 (the lower-priority queue) are
 even considered.

Expected Behavior

- When **Device A and Device B** both send packets to **Device C** at the same time:
 - Packets from **Device A** (with DSCP 0x48) will be placed in the high-priority egress queue 7 and will be transmitted first.
 - Packets from **Device B** will be placed in the low-priority egress queue 1.
 These packets will only be transmitted once queue 7 is empty.
- As a result, packets from **Device A** will reach **Device C** quickly, without being delayed by the packets from **Device B**.

Summary

By configuring the scheduler with "Strict Priority" on port 3, we're ensuring that highpriority traffic (from Device A) is not delayed by lower-priority traffic (from Device B). This setup is crucial in scenarios where certain types of data, such as real-time communications or critical control signals, must be delivered promptly without delay.

Example: Configuring A Sample Environment for Strict Priority Scheduler (TN_Series)

The QoS scheduler example relies on this configuration.

- 1. Sign in to the device using administrator credentials.
- 2. Go to Layer 2 Switching > VLAN > Settings, and then click **L**[Add].

The Create VLAN screen appears.

3. In VLAN, type 10, and then click Create.

The specified VLAN appears in the list.

4. In the table on the second half of the page, find 1 and click [Edit].

The Edit Port Settings screen appears.

- 5. Specify **Mode** as **Access**, and then specify a **PVID** of **10**.
- Under Copy configurations to ports, choose ports 2 and 3, and then click
 Apply to save changes.
- 7. Go to Layer 2 Switching > QoS > Classification, and under DSCP Mapping, locate DSCP 48 and verify that it is set to 6.

If the value is different, click **[Edit]**, set **CoS Priority** to **6**, and then click **Apply**.

8. Click **CoS Mapping** at the top of the screen, locate **CoS 6**, and verify that **Queue** is set to **7**.

If the value is different, click **[Edit]**, set **Queue** to **7**, and then click **Apply**.

The device on Port **3** needs to be configured to set its outgoing packets with a QoS DSCP value of 0x48.

Example: Configuring Scheduler for Strict Priority (TN Series)

Strict Priority switching ensures that higher priority packets always preempt loc

This example assumes the following configuration, outlined in the preceding section:

- VLAN of 10
- Ports 1, 2, and 3 in Access mode assigned to PVID 10
- DSCP 48 set to 6
- CoS 6 with a Queue of 7

Additionally, the device on Port **3** needs to be configured to set its outgoing packets with a QoS DSCP value of 0x48.

If your environment does not match the above configuration, the example may not function properly.

- 1. Sign in to the devices using administrator credentials.
- 2. Go to Layer 2 Switching > QoS > Scheduler.
- 3. Locate Port **3**, and then click **[Edit]**.

The Edit Port Settings screen appears.

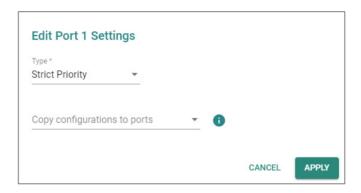
4. Make sure **Type** is set to **Strict Priority**, and then click **Apply**.

Scheduler

Menu Path: Layer 2 Switching > QoS > Scheduler

This page lets you configure your device's QoS scheduler on a per-port basis.

Scheduler List


UI Setting	Description
Port	Shows the port number for the entry.
Туре	Shows the scheduling algorithm selected for the port.

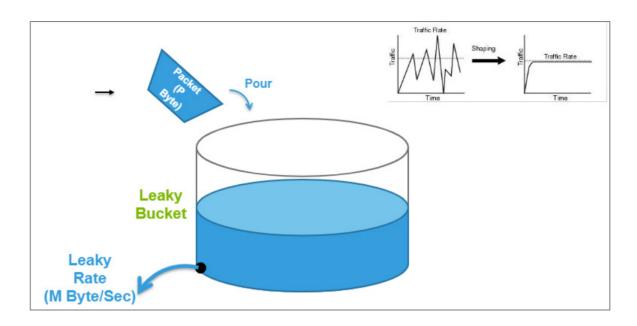
Scheduler - Edit Port Settings

Menu Path: Layer 2 Switching > QoS > Scheduler

Clicking the **Edit** () icon for a port on the **Layer 2 Switching > QoS > Scheduler** page will open this dialog box. This dialog lets you select the scheduling algorithm for the port.

Click **APPLY** to save your changes.

UI Setting	Description	Valid Range	Default Value
Туре	 Strict Priority: Strict priority will be used. Weighted Round Robin: Queued packets will be forwarded based on their associated weight. 	Strict Priority / Weighted Round Robin	Strict Priority
Copy configurations to ports	Select the ports you want to copy this configuration to.	Drop-down list of ports	N/A


Configuring Egress Shaper

A shaper for egress traffic buffers or queses excess traffic to hold packets and shape traffic flow when source data rates are higher than expected.

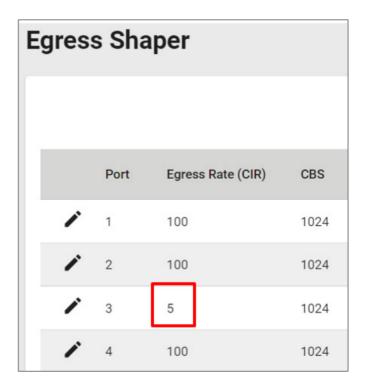
About Egress Shaper

The Egress Shaper uses a meter algorithm known as a leaky bucket. Like its physical counterpart, the leaky bucket collects incoming traffic up to a maximum capacity. Data

stored in the bucket is released at a steady rate. When the bucket is empty, the flow stops.

If incoming packets would exceed the capacity the bucket, those packets would be non-conforming, and are not added to the bucket (dropped). Data will be added to the bucket as space becomes available for conforming packets. To setup Egress Shaper on a specific port, you will need to provide CIR (Committed Information Rate) and CBS (Committed Burst Rate) values.

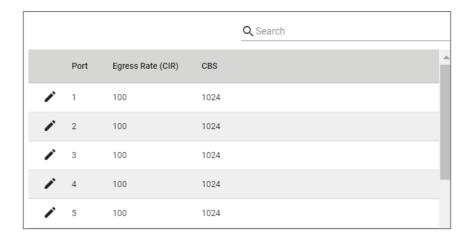
Configuring Rate Limits for Outgoing Traffic


You can use egress rate limits to ensure steady flow of traffic to ports you specify. In this scenario, we have 3 devices:

- Device A, connected to the switch at Port 1
- Device B, connected to the switch at Port 2
- Device C, connected to the switch at Port 3

When both Device A and Device B send packets simultaneously to Device C, and there are no rate limits set on ports 1 and 2, Configuring the Committed Information Rate (CIR) to 5 Mbps on port 3 ensures that the outgoing packets maintain a steady packet rate to reach Device C as expected.

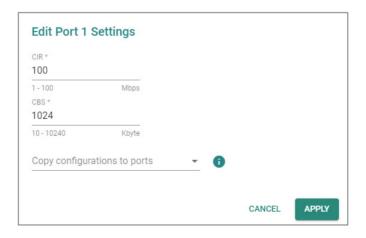
Before you begin:


- Change the configuration mode to **Advanced** mode by selecting the mode in the upper right corner of the UI.
- Create a new VLAN ID with a value of 10
- Configure Port 1 with a **PVID** of 10 and with **Access mode** enabled
- Configure Port 2 with a **PVID** of 10 and with **Access mode** enabled
- Configure Port 3 with a **PVID** of 10 and with **Access mode** enabled
- 1. Sign in to the device using administrator credentials.
- 2. Go to Layer 2 Switching > QoS > Egress Shaper.
- Click [Edit] corresponding to Port 3.
 Result: The Edit Port Settings dialogue appears.
- In the CIR field, specify 5 Mbps, and then click Apply.
 Result: The new Egress Rate (CIR) will appear in the table.

Egress Shaper

Menu Path: Layer 2 Switching > QoS > Egress Shaper

This page lets you configure QoS egress shaper settings on a per-port basis.


UI Setting	Description
Port	Shows the port number the entry is for.
Egress Rate (CIR)	Shows the egress Committed Information Rate (CIR) value for the port.
CBS	Shows the egress Committed Burst Size (CBS) value for the port.

Egress Shaper - Edit Port Settings

Menu Path: Layer 2 Switching > QoS > Egress Shaper

Clicking the **Edit** () icon for a port on the **Layer 2 Switching > QoS > Egress Shaper** page will open this dialog box. This dialog lets you configure the egress shaping settings for the port.

Click **APPLY** to save your changes.

UI Setting	Description	Valid Range	Default Value
CIR (Committed Information Rate)	Specify the committed data transmission rate.	Fast Ethernet ports: 1 to 100	Fast Ethernet ports: 100
		Gigabit Ethernet ports: 1 to 1000	Gigabit Ethernet ports: 1000
CBS (Committed Burst Size)	Specify the maximum amount of data in KB that is allowed to be transmitted in a burst, even if it would cause the CIR rate to be exceeded.	10 to 10240	1024
Copy configurations to ports	Select the ports you want to copy this configuration to.	Drop-down list of ports	N/A

Multicast

Multicast is a one-to-many communication method that sends data to a specific group of receivers. Those who wish to receive multicast packets must register for the multicast service; unregistered recipients will not receive the packets. Multicast is an "on-demand" service typically used for audio and video applications. For example, IP cameras (commonly used in CCTV systems) may need to transmit video streams to three different security guard rooms in a building simultaneously. Multicast is also used for protocol exchanges, as L3 protocols (VRRP, OSPF, RIP, etc) communicate with each other using multicast.

Benefits of Multicast:

- **Efficient bandwidth utilization:** Multicast reduces network congestion by sending data to only interested recipients.
- **Reduced server load:** Multicast servers only need to send data once, rather than multiple times for individual recipients.
- **Scalability:** Multicast can effectively handle large groups of receivers without affecting network performance.

Overall, multicast is a valuable tool for efficient and scalable one-to-many communication, particularly in applications involving audio, video, and protocol exchanges.

How Multicast Works

As mentioned, multicast is a network communication method designed for efficient one-to-many data transmission. Imagine you have a presentation you want to deliver to a specific group of people in a large conference hall. Instead of emailing it to everyone individually, multicast allows you to send it to a single "group" that only the intended recipients can access.

Here's a breakdown of how it works:

• Groups and Membership:

- Devices interested in receiving the same data stream form a multicast group identified by a unique multicast address.
- Devices join or leave the group dynamically using protocols like IGMP (Internet Group Management Protocol).

Source and Data:

- A single source device transmits the data (e.g., a video stream, a software update).
- The data is encapsulated with the specific multicast address of the target group.

Network Routing:

- Network switches and routers play a crucial role in directing the data.
- They recognize the multicast address and replicate the data packet only for the ports connected to devices that are members of the target group.
- Devices not in the group will not receive the data, reducing unnecessary network traffic.

There are three primary methods for controlling multicast traffic on a switch:

- **Static multicast** is for configuring the multicast forwarding entries in the switch in a manual or predetermined manner. (e.g., forward 01:00:5E:05:06:07 to ports 1, 2, and 3). This method suits static networks where you want to control all the multicast flow. Another scenario is that the end device cannot communicate with IGMP protocol.
- **GMRP** allows bridges and the devices at the edge of the network to perform dynamic group membership information registration with the MAC bridges

- connected to the same LAN section. This method lets bridges communicate with each other to register the static multicast table dynamically.
- **IGMP snooping** allows a device to listen in on the IGMP conversation between hosts and routers. By listening to these conversations, the device maintains an association mapping table between port(s) and multicast groups. This method suits dynamic networks where end devices use IGMP to register the multicast group.

In summary, here are key considerations when selecting a multicast traffic control method:

- For static networks with predetermined multicast destinations, static multicast offers a simple solution.
- If you have a network with multiple bridges and static multicast tables on edge devices, **GMRP** can help maintain consistency.
- In dynamic networks where end devices use IGMP, **IGMP snooping** provides efficient management of multicast traffic.

Multicast

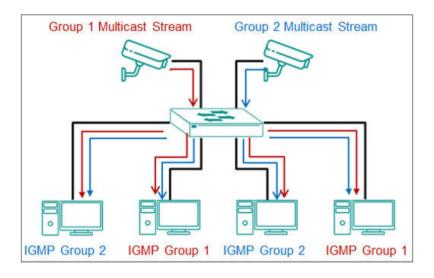
Menu Path: Layer 2 Switching > Multicast

This section lets you configure the Multicast settings.

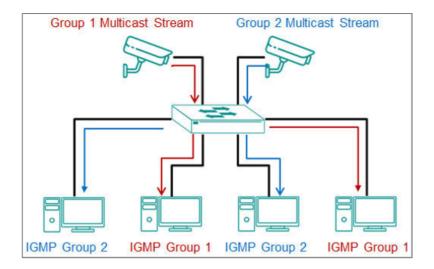
This section includes these pages:

- IGMP Snooping
- GMRP
- Static Multicast

About IGMP Snooping


IGMP snooping allows switches to reduce the amount of unwanted multicast traffic on a network by maintaining maps of multicast group members, ensuring that multicast packets are only delivered to devices that have explicitly asked to receive them. Internet Group Management Protocol (IGMP) is a network protocol that hosts nearby routers on networks to construct multicast group memberships. IGMP snooping allows a network switch to listen in on the IGMP conversation between hosts and routers. By listening to

these conversations, the switch maintains an association mapping table between port(s) and multicast group.


How IGMP Snooping Works

Without IGMP snooping, a switch will flood multicast traffic to all other non-ingress ports within a broadcast domain (or VLAN). This can cause unnecessary loading for host devices by requiring them to process packets they have not solicited. IGMP snooping can help prevent host devices on a local network from receiving traffic for a multicast group they have not explicitly joined. It provides switches with a mechanism to forward multicast traffic to specific ports that receive IGMP hosts, resulting in more efficient network bandwidth utilization.

Without IGMP Snooping:

With IGMP Snooping:

Enabling IGMP Snooping

IGMP Snooping must be enabled before it can be configured on specific interfaces.

To enable IGMP snooping, do the following:

- 1. Sign in to the device using administrator credentials.
- 2. Go to Layer 2 Switching > Multicast > IGMP Snooping and click General.
- 3. Set **IGMP Snooping** to **Enabled**.
- 4. Click Apply.

IGMP snooping is now enabled. Existing IGMP snooping configurations will now be active.

Configuring IGMP Snooping

IGMP snooping is configured at the VLAN level.

- VLAN IDs must be created and assigned before IGMP snooping can be configured.
- IGMP Snooping must be enabled before it can be configured on specific interfaces.

To configure IGMP snooping, do the following:

- 1. Sign in to the device using administrator credentials.
- Go to Layer 2 Switching > Multicast > IGMP Snooping, and click VLAN Settings.

The **IGMP Snooping** list of **VLAN IDs** appears.

3. Click **[Edit]** corresponding to the VLANs on which to configure IGMP snooping.

Note: If you do not see the VLANs you expect, make sure they are correctly assigned.

The Edit VLAN Settings screen appears.

4. Configure all of the following:

Option	Value
IGMP Snooping	Enabled
Version	Choose a version corresponding to device support and feature needs.
Query Interval	125
Static Router Port	This is optional.
Config Role	Querier

5. Click Apply.

About IGMP Versions

IGMP protocols regulate the communication mechanism between querier and listener.

For IGMP-related settings, ensure that you have chosen the correct protocol version. Consult the table below for guidelines on choosing a version.

IGMP Version	Features	Reference
v1	 Multicast Group Membership: Host devices can join multicast groups, but there is no explicit leave message. The host will simply stop responding to membership queries. Membership Query: Network devices periodically send membership queries to determine if any host devices are still interested in receiving multicast traffic. Membership Report: When a host device wants to join a multicast group, it sends a membership report. If no reports are received for a multicast group, the network device assumes there are no interested hosts and stops forwarding traffic to that group. 	RFC-1112
	Limitations: No Leave Group Message: Hosts cannot explicitly leave a multicast group, which can lead to inefficient use of resources as routers have to rely on timeouts to determine if there are no more members.	
v2	Additional features:	RFC-2236
	 Leave Group Message: Host devices can send a leave group message to notify the network device they are no longer interested in a multicast group, improving the efficiency of multicast traffic management. 	
	 Group-Specific Queries: Network devices can send group-specific queries to confirm if any members of a particular multicast group still exist, reducing overall network traffic compared to general queries. 	
	 Query Election: Introduces a mechanism to elect a single query router on a subnet to avoid redundant queries, thereby optimizing network bandwidth. 	
v3	Additional Features:	RFC-3376
	 Source-Specific Multicast (SSM): Supports source filtering, allowing host devices to specify from which sources they receive multicast traffic. This is useful for applications that need to filter out unwanted traffic from certain sources. 	
	 Include/Exclude Mode: Host devices can explicitly include or exclude traffic from specified sources, providing more granular control over multicast group membership. 	
	 Membership Report Enhancements: The membership report format is enhanced to support the new source filtering capabilities. 	

✓ Note

Although most modern devices should support v3, there may be regulatory concerns or legacy deployments to consider.

IGMP Snooping

Menu Path: Layer 2 Switching > Multicast > IGMP Snooping

This page lets you configure IGMP snooping for your device.

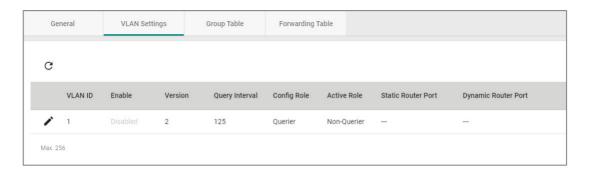
This page includes these tabs:

- General
- VLAN Settings
- Group Table
- Forwarding Table

IGMP Snooping - General

Menu Path: Layer 2 Switching > Multicast > IGMP Snooping - General

This page lets you configure IGMP snooping general settings.



UI Setting	Description	Valid Range	Default Value
IGMP Snooping	Enable or disable IGMP snooping for the device. Note IGMP Snooping cannot be enabled when GMRP is enabled.	Enabled / Disabled	Enabled

IGMP Snooping - VLAN Settings

Menu Path: Layer 2 Switching > Multicast > IGMP Snooping - VLAN Settings

This page lets you configure IGMP snooping VLAN settings.

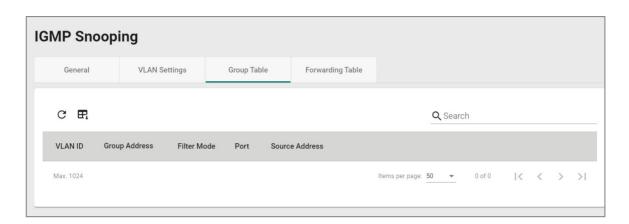
UI Setting	Description
VLAN ID	Shows the ID of the VLAN ID the entry is for.
Enable	Shows whether IGMP snooping is enabled for the VLAN.
Version	Shows the IGMP version of the packets the VLAN will listen to and send queries for.
Query Interval	Shows the query interval for the Querier function globally for the VLAN, if the Querier is enabled.
Config Role	Shows the config role of the VLAN.
Active Role	Shows the active role of the VLAN.
Static Router Port	Shows the static router port for the VLAN. This is the port that connects to the upper level router (or IGMP querier), or to the upper level router of downstream multicast streams. All received IGMP signaling packets and multicast streams will be forwarded to the static router ports.
Dynamic Router Port	Shows the dynamic router port for the VLAN.

IGMP Snooping - Edit VLAN Settings

Menu Path: Layer 2 Switching > Multicast > IGMP Snooping - VLAN Settings

Clicking the **Edit** () icon for a VLAN on the **Layer 2 Switching > Multicast > IGMP Snooping - VLAN Settings** page will open this dialog box. This dialog lets you edit the IGMP snooping settings for the VLAN.

Click **APPLY** to save your changes.



UI Setting	Description	Valid Range	Default Value
IGMP Snooping	Enable or disable IGMP snooping for the VLAN.	Enabled / Disabled	Disabled
Version	Specify the IGMP version of the packets to listen to and send queries for.	1/2/3	2
Query Interval	Specify the query interval for the Querier function globally, if the Querier is enabled.	20 to 600 sec.	125 sec.
Static Router Port	Select a static router port for the VLAN. This is the port that connects to the upper level router (or IGMP querier), or to the upper level router of downstream multicast streams. All received IGMP signaling packets and multicast streams will be forwarded to the static router ports.	Drop-down list of ports	N/A
Config Role	Select the config role for the VLAN.	Querier / Non- Querier	Querier

Group Table

Menu Path: Layer 2 Switching > Multicast > IGMP Snooping - Group Table

This page lets you view the IGMP snooping group table.

Item	Description	
VLAN	Shows the ID of the VLAN the entry is for.	
Group Address	Shows the registered multicast group address for the VLAN.	
Filter Mode	 Shows the filter mode for the VLAN. This is only applicable for IGMPv3. Include: Source-specific multicast address group Exclude: Source-specific exclusive multicast address group 	
Port	Shows the forwarding port for the VLAN.	
Source Address	Shows the source address for the VLAN. This is only applicable for IGMPv3.	

IGMP Snooping - Forwarding Table

Menu Path: Layer 2 Switching > Multicast > IGMP Snooping - Forwarding Table

This page lets you view the IGMP snooping forwarding table.

Item	Description
VLAN	Shows the ID of the VLAN the entry is for.
Group Address	Shows the associated multicast group address for streaming data for the VLAN.
Source Address	Shows the source address for streaming data for the VLAN.
Port	Shows the forwarding port of the VLAN.

About GMRP

GMRP stands for GARP Multicast Registration Protocol, which is a Generic Attribute Registration Protocol (GARP) application that can be used to prevent multicast from data flooding.

Both GMRP and GARP are defined by IEEE 802.1P, and widely used as a standard protocol in various industrial-related applications. GMRP allows bridges and the devices at the edge of the network to perform a dynamic group membership information registration with the MAC bridges connected to the same LAN section. The information can be transmitted among all bridges in the Bridge LAN that is implemented with extended filtering features. To operate GMRP, the GARP service must be established first.

GARP stands for **Generic Attribute Registration Protocol**, which is a communication protocol defined by IEEE 802.1, offering a generic framework for bridges to register and de-register an attribute value. In a LAN structure, two applications can be applied: **GARP VLAN Registration Protocol (GVRP)** is used to register VLAN trunking between multilayer switches, and **GARP Multicast Registration Protocol (GMRP)** for providing a constrained multicast flooding facility.

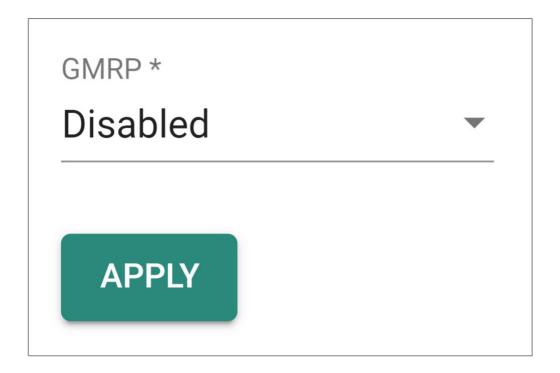
L2 switches exchange GMRP packets with each other to know the multicast entries on other switches so that it can also register the multicast entry on its own table. After exchanging the information, the multicast traffic will only be forwarded to the corresponding ports.

Configuring GMRP

- 1. Sign in to the device using administrator credentials.
- 2. Go to Layer 2 Switching > Multicast > GMRP.
- 3. Set GMRP to Enabled, and then click Apply.
- Locate the port on which you want to enable GMRP, and then click the corresponding [Edit] button.

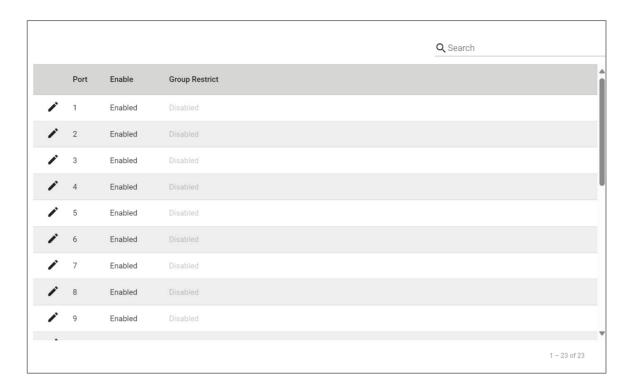
The Edit Port Settings screen appears.

5. Set **GMRP** to **Enabled**, and then click **Apply** to save your settings.


GMRP is now enabled.

GMRP

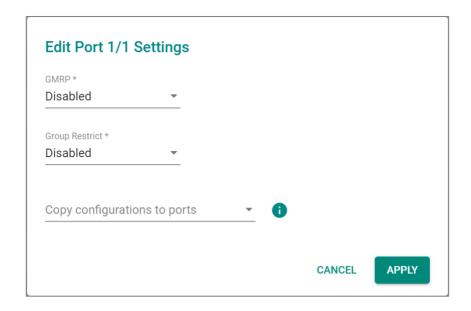
Menu Path: Layer 2 Switching > Multicast > GMRP


This page lets you configure the GMRP settings of your device.

GMRP Settings

UI Setting	Description	Valid Range	Default Value
GMRP	Enable or disable GMRP for the device. Note GMRP cannot be enabled when IGMP Snooping is enabled.	Enabled / Disabled	Disabled

GMRP Port List


UI Setting	Description
Port	Shows the port number the entry is for.
Enable	Shows whether GMRP is enabled for the port.
Group Restrict	Shows whether group restrict is enabled for the port.

GMRP - Edit Port Settings

Menu Path: Layer 2 Switching > Multicast > GMRP

Clicking the **Edit** () icon for a port on the **Layer 2 Switching > Multicast > GMRP** page will open this dialog box. This dialog lets you edit the GMRP settings for the port.

Click **APPLY** to save your changes.

UI Setting	Description	Valid Range	Default Value
GMRP	Enable or disable GMRP for the port.	Enabled / Disabled	Disabled
Group Restrict	Enable or disable group restrict for the port.	Enabled / Disabled	Disabled
Copy configurations to ports	Select the ports you want to copy this configuration to.	Drop-down list of ports	N/A

About Static Multicast

Static multicast is for configuring the multicast forwarding entries in the switch in a manual or predetermined manner.

In multicast networking, data packets are sent from one sender to multiple receivers efficiently, rather than sending individual packets to each receiver separately, as in unicast communication.

Network administrators manually configure the multicast forwarding entries in the device's multicast forwarding table. This involves specifying the multicast group addresses and the corresponding outbound interfaces or ports through which multicast traffic should be forwarded.

Benefits:

- Predictable Behavior: Static multicast provides predictable behavior, as the
 forwarding paths for multicast traffic are predetermined by the administrator. This
 can be advantageous in certain network environments where stability and control
 are prioritized over flexibility and adaptability.
- 2. **Resource Efficiency**: Since static multicast entries are manually configured and do not involve the overhead of dynamic routing protocols, they can be more resource-efficient in terms of processing power and network bandwidth, especially in small-scale deployments with relatively stable multicast group memberships.

How Static Multicast works

If the user wants to restrict some of the multicast groups to be forwarded to specific ports for devices that don't support IGMP, users can use static multicast setting.

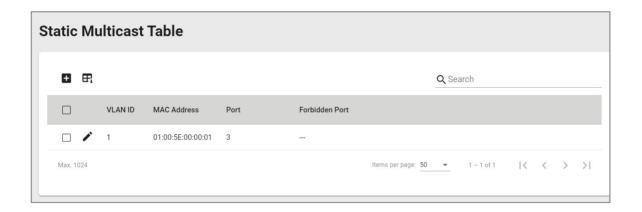
Users can manually register the multicast forwarding entries, including multicast MAC address and forwarding/forbidden port on the table, and the switch will forward the multicast traffic following the table rather than flooding.

Configuring Static Multicast Tables

- 1. Sign in to the device using administrator credentials.
- 2. Go to Layer 2 Switching > Multicast > Static Multicast
- 3. To add a static multicast entry, click the **[Add]**.
- 4. Configure the following, and then click **Create**:

Option	Value
VLAN ID	Specify the VLAN ID
MAC Address	 Specify the multicast MAC address. IPv4 Multicast Range: 01:00:5E:00:00:00 to 01:00:5E:7F:FF (last 23 bits used for the multicast group address) IPv6 Multicast Range: 33:33:00:00:00:00 to 33:33:FF:FF:FF (last 32 bits used for multicast group address)
Port	Choose one or more egress ports.

Option	Value
Forbidden Ports	Specify a device port that will never forward multicast packets, even if it would otherwise be covered.

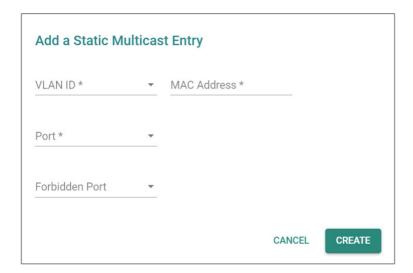

Static Multicast

Menu Path: Layer 2 Switching > Multicast > Static Multicast

This page lets you view and manage your device's static multicast table.

O Limitations

You can create up to 1024 static multicast entries.


UI Setting	Description
VLAN ID	Shows the ID of the VLAN used for the multicast group entry.
MAC Address	Shows the MAC address for the multicast group entry.
Port	Shows the egress ports that multicast streams will forward to for the multicast group entry.
Forbidden Port	Show the forbidden ports that packets will not be forwarded to for the multicast group entry.

Add a Static Multicast Entry

Menu Path: Layer 2 Switching > Multicast > Static Multicast

Clicking the Add () icon on the Layer 2 Switching > Multicast > Static Multicast page will open this dialog box. This dialog lets you add a static multicast entry.

Click **CREATE** to save your changes and add the new entry.

UI Setting	Description	Valid Range	Default Value
VLAN ID	Select a VLAN ID for the multicast entry.	Drop-down list of VLAN IDs	N/A
MAC Address	Specify the MAC address for the multicast entry.	Valid multicast MAC address	N/A
Port	Select the ports to use as egress ports for multicast streams to be forwarded to.	Drop-down list of ports	N/A
Forbidden Port	Select which ports are forbidden so packets cannot be forwarded to them.	Drop-down list of ports	N/A

IP Configuration

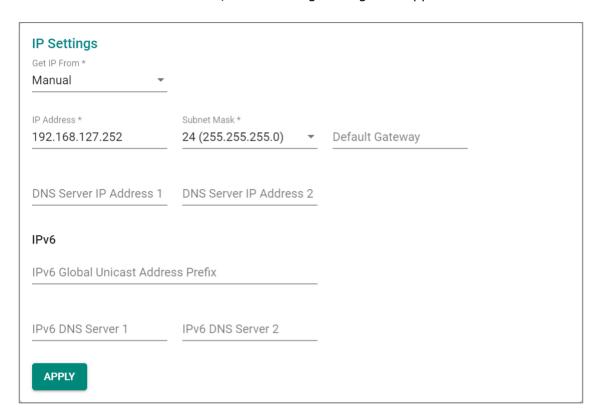
The IP Configuration feature allows you to assign an IP address and related settings to the device itself. This essentially gives the device its own unique identity on the network, enabling it to communicate and manage other network devices, be accessible remotely, and facilitate specific functions such as DHCP Relay Agent.

The IP address can be set manually to a static IP address, using user-entered values, or automatically obtained from an external DHCP server.

IP Configuration

Menu Path: IP Configuration

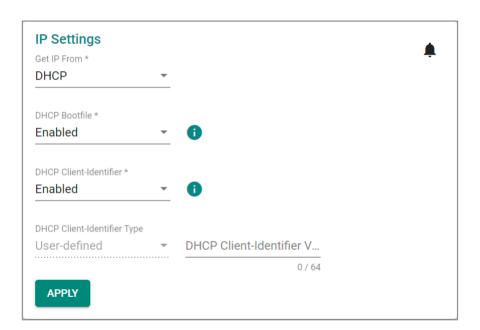
This page lets you view and manage the device's IP address.


IP Status

UI Setting	Description
Get IP From	Shows where the device gets its IP address from. Manual means that the IP address is manually assigned.
IP Address	Shows the IP address for the device.
Subnet Mask	Shows the subnet mask used for the device.
Default Gateway	Shows the IP address of the gateway that connects the LAN to a WAN or another network.
DNS Server IP Address	Shows the IP address of the DNS server used by the device.

IP Settings - Manual

If **Get IP From** is set to **Manual**, the following settings will appear.



UI Setting	Description	Valid Range	Default Value
Get IP From	 Specify where the device will get its IP from. Manual: Set the IP address manually. DHCP: Assign the IP address automatically through a DHCP server. 	Manual / DHCP	Manual
IP Address	Specify the IP address to use for the device.	Valid IP address	192.168.127.252
Subnet Mask	Select the subnet mask to use for the device.	Drop-down list of subnet masks	24(255.255.255.0)
Default Gateway	Specify the IP address of the gateway that connects the LAN to a WAN or another network.	Valid IP address	N/A

UI Setting	Description	Valid Range	Default Value
DNS Server IP Address 1/2	Specify the IP address of the 1st and 2nd DNS server used by your network. After specifying the DNS server's IP address, you can use the device's URL (e.g., www.mymoxaswitch.com) to open the web console instead of entering the device's IP address.	Valid IP address	N/A
IPv6 Global Unicast Address Prefix	Specify the IPv6 global unicast address prefix to use for your network.	Valid IPv6 address	N/A
IPv6 DNS Server 1/2	Specify the IP address of the 1st and 2nd IPv6 DNS server used by your network.	Valid IPv6 address	N/A

IP Settings - DHCP

If **Get IP From** is set to **DHCP**, the following settings will appear.

UI Setting	Description	Valid Range	Default Value
Get IP From	 Specify where the device will get its IP from. Manual: Set the IP address manually. DHCP: Assign the IP address automatically through a DHCP server. 	Manual / DHCP	Manual

UI Setting	Description	Valid Range	Default Value
DHCP Bootfile	Enable or disable use of a DHCP bootfile. If enabled, the system will automatically download and restore the configuration settings of the bootfile described in Option 67 and from the server described in Option 66.	Enabled / Disabled	Enabled
DHCP Client- Identifier	Enable or disable use of a DHCP client-identifier. If enabled, the system will send DHCP client messages with an Option 61 tag including a client ID. The DHCP server will assign the IP address associated with the client ID value, if available.	Enabled / Disabled	Disabled
DHCP Client- Identifier Type (If DHCP Client- Identifier is	Shows the DHCP Client-Identifier Type. Note This is fixed to User-defined and cannot be changed.	User- defined	User- defined
DHCP Client- Identifier Value (If DHCP Client- Identifier is Enabled)	Specify the DHCP client-identifier value to use.	1 to 64 characters	N/A

Redundancy

Menu Path: Redundancy

This section lets you configure the redundancy settings for your device.

This section includes these pages:

• Layer 2 Redundancy

Layer 2 Redundancy

Menu Path: Redundancy > Layer 2 Redundancy

This section lets you manage the Layer 2 redundancy features of your device.

This section includes these pages:

- · Spanning Tree
- Turbo Ring V2
- MRP

Selecting a Layer 2 Redundancy Protocol

Selecting the appropriate Layer 2 redundancy protocol for your network depends on several factors, including:

- The topology and size of your network
- The applications and services you are running
- Your availability and performance requirements

Suggestions for protocol selection will be mentioned in later chapters. Here's a summary of each protocol to help you make an informed decision.

Category		RSTP	Turbo Ring v2	Turbo Chain	MRP
Specification needs	Diameter	40 pcs	250 pcs within a ring	250 pcs within a chain	50 pcs

Category		RSTP	Turbo Ring v2	Turbo Chain	MRP
	Recovery Time	within 3 Hello times (default: 3 times 2 seconds)	Fast Ethernet: 20ms Gigabit Ethernet: 50ms	Fast Ethernet: 20ms Gigabit Ethernet: 50ms	200 ms
	Link Health Check (Packet Detection Mechanism)	2 sec/ RSTP BPDU (default)	Giga Ethernet: 10ms/ LHC pkt	Giga Ethernet: 10ms/ LHC pkt	20 ms / test frame packet
Application needs	Multi-Vendor Support	Public Standard	MOXA proprietary	MOXA proprietary	Public Standard
	Easy- Deployment	Mesh	Ring Topology	Chain Topology	Ring Topology
	Flexible Scalability	N/A	Turbo Ring + Ring Coupling	Directly connected to existing network without any changes.	MRP Ring + MRP Interconnection
Supported Ve	rsion	MX-NOS V1.0, MX- NOS V2.0,	MX-NOS V1.0, MX-NOS V2.0, MX-NOS V3.0,	MX-NOS V1.0, MX- NOS V2.0,	MX-NOS V4.0, MX-NOS V5.0, MX-NOS Rail V1.0
		MX-NOS V3.0, MX- NOS V4.0, MX-NOS V5.0, MX- NOS Rail V1.0	MX-NOS V4.0, MX-NOS V5.0, MX-NOS Rail V1.0	MX-NOS V3.0, MX- NOS V4.0, MX-NOS V5.0	Note Currently, MX-NOS Rail V1.0 supports MRP but does not support MRP interconnection.

How to Choose Redundancy Protocol - Task User Scenario

User Scenario 1

A semiconductor factory plans to construct a new facility to increase chip production capacity for future electric vehicles. They require a large automated network (100+ switches) with redundant mechanisms to prevent unexpected downtime that could

impact production lines. Additionally, their network must balance traffic across multiple links to prevent congestion and improve overall performance.

Analysis

- 1. This is a new project with no existing infrastructure. Everything will start from scratch.
- 2. Redundancy protocol is required and supports 100+ switches network.
- 3. Link aggregation is needed to increase total throughput beyond what a single connection can sustain.

Solution: Turbo Ring v2

I would recommend using Turbo Ring in situations where extremely fast failover times are required, such as in mission-critical industrial control systems. Turbo Ring v2 provides easy ring topology deployment and supports port trunking as well. With Moxa's **Turbo Ring** technology, networks can recover within 20 ms (Fast Ethernet/Fiber)/50 ms (Giga Copper) on a network with up to 250 nodes.

User Scenario 2

The Phase II Metro project has commenced, encompassing 15 new stations. This project not only establishes its system with a redundant topology but also ensures compatibility with the Phase I system. The Phase I system comprises a mesh topology with RSTP protocol, consisting of over 30 switches, with cabling that is outdated and no longer replaceable. Nevertheless, Phase II must be interconnected with Phase I without any modifications to the latter.

Analysis

- 1. This is a rebuilt project and it should be interconnected with RSTP topology.
- 2. Redundancy protocol is required and supports 100+ switches network.

Solution: Turbo Chain

I would recommend using Turbo Chain in situations. One of the key advantages of Turbo Chain is its simplicity and ease of deployment. It can be directly interconnected to RSTP topology with any change on RSTP network.

✓ Note

For User Scenario 2, the following two are also alternative solutions:

- 1. Turbo Ring v2 with Ring coupling to RSTP is also an alternate solution. It depends on network physical deployment.
- 2. Users still can enable RSTP and connect to the existing RSTP network.

User Scenario 3

A well-known railway vehicle manufacturer needs to plan a new on-board network. The customer wishes to plan a ring network via Turbo Ring for multiple vehicles to form a consist. The consists also need to be interconnected with each other to be a train, and a redundant backup mechanism should be provided between consists.

Solution: Ring Coupling

Cross Turbo Ring Network can be connected with ring coupling.

About Spanning Tree

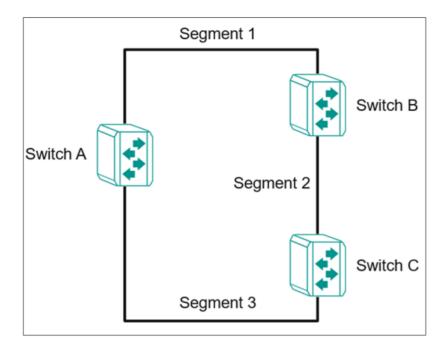
The Spanning Tree Protocol (STP) was designed to help construct a loop-free logical typology on an Ethernet network and provide an automatic means of avoiding any network loops. This is particularly important for networks that have a complicated architecture, since unintended loops in the network can cause broadcast storms. Moxa switches' STP feature is disabled by default. To be completely effective, you must enable STP/RSTP on every Moxa switch connected to your network.

STP (802.1D) is a bridge-based system that is used to implement parallel paths for network traffic. STP uses a loop-detection process to:

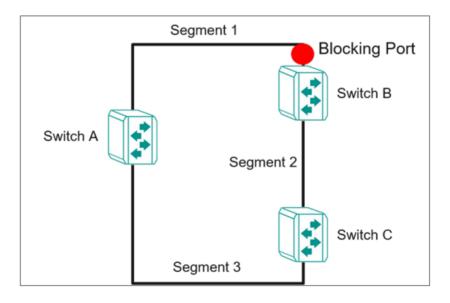
- Locate and then disable less efficient paths (e.g., paths that have lower bandwidth).
- Enable one of the less efficient paths if a more efficient path fails.

Rapid Spanning Tree Protocol (RSTP) is an IEEE 802.1w network protocol that enhances the speed and stability of the Spanning Tree Protocol (STP). RSTP promotes high availability and a "loop-free" topology, similar to STP, but more quickly within Ethernet networks. It provides faster convergence and is backward compatible with STP. While STP takes 30-50 seconds to converge, RSTP can achieve sub-second convergence.

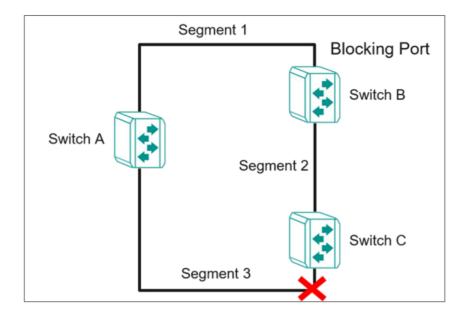
For applications that require redundancy, but require use of only open-standard protocols and no proprietary protocols, RSTP is a good choice.


Difference Between STP and RSTP

RSTP is similar to STP but includes additional information in the BPDUs that allow each bridge to confirm that it has taken action to prevent loops from forming when it decides to enable a link to a neighboring bridge. Adjacent bridges connected via point-to-point links will be able to enable a link without waiting to ensure that all other bridges in the network have had time to react to the change. The main benefit of RSTP is that the configuration decision is made locally rather than network-wide, allowing RSTP to carry out automatic configuration and restore a link faster than STP.


STP and RSTP spanning tree protocols operate without regard to a network's VLAN configuration and maintain one common spanning tree throughout a bridged network. Thus, these protocols map one loop-free, logical topology on a given physical topology.

About STP Operations


The figure below shows a network made up of three LANs separated by three bridges. Each segment uses at most two paths to communicate with the other segments. Since this configuration can give rise to loops, the network will overload if STP is not enabled.

If STP is enabled, it will detect duplicate paths or block one of the paths from forwarding traffic. In the following example, STP determined that traffic from segment 2 to segment 1 flows through switches C and A since this path is in a forwarding state and is processing BPDUs. However, switch B on segment 1 is in a blocking state.

What happens if a link failure is detected? As shown in the figure below, the STP will change the blocking state to a forwarding state so that traffic from segment 2 flows through switch B to segment 1 through a redundant path.

STP will determine which path between each segment is most efficient, and then assign a specific reference point on the network. When the most efficient path has been identified, the other paths are blocked. In the previous three figures, STP first determined that the path through switch C was the most efficient, and as a result, blocked the path through switch B. After the failure of switch C, STP re-evaluated the situation and opened the path through switch B.

About RSTP

Rapid Spanning Tree Protocol (RSTP) is an enhancement of the original Spanning Tree Protocol (STP) designed to speed up network convergence and improve overall network performance.RSTP ensures there is only one active path between devices in a network, with backup paths ready to activate if the primary path fails.

Each port is assigned a cost that indicates the efficiency of its link. Typically, this cost is determined by the link's bandwidth, with less efficient links assigned a higher cost.

The RSTP path cost default was originally calculated after detecting the bandwidth as follows.

Link Speed	RSTP/MSTP cost
100 Mbit/s	200,000
1 Gbit/s	20,000
10 Gbit/s	2,000

This can be overwritten from the UI.

Key Features of RSTP

- **Faster Convergence:** RSTP reduces the time required to detect and respond to network topology changes compared to STP. It eliminates the lengthy listening and learning states of STP, allowing for guicker transitions to active states.
- **Localized Decision-Making:** Unlike STP, where decisions are made networkwide, RSTP enables switches to make local configuration decisions. This allows for faster automatic configuration and quicker restoration of network links.
- **Simplified Port Roles:** RSTP uses only three primary port roles—Root Port, Designated Port, and Alternate Port—streamlining the network's operation and improving convergence speed.
- Proposal/Agreement Mechanism: RSTP introduces the Proposal/Agreement process to quickly determine designated ports during topology changes, further accelerating convergence.

How RSTP Works

RSTP operates in the following sequence:

- 1. **Root Bridge Selection:** The switch with the lowest bridge priority or MAC address is designated as the root bridge, forming the base of the spanning tree.
- 2. **Root Port Selection:** Non-root switches select their root port, which provides the best path to the root bridge based on path cost.
- 3. **Designated Ports Assignment:** Each network segment designates a port to forward traffic, ensuring optimal paths are used.
- 4. **Blocking State:** Non-designated or non-root ports remain in a blocking state, preventing loops.

Benefits of RSTP

• **Improved Network Stability:** RSTP's fast convergence mechanisms reduce the risk of network outages by adapting quickly to changes in the network topology.

• **Backward Compatibility:** RSTP is fully compatible with STP, allowing a smooth transition in mixed networks where some devices still use the older protocol.

Overall, RSTP offers significant improvements over STP, making networks more resilient and responsive to changes, thereby enhancing overall reliability and performance.

Scenario: Configuring 4 Devices with RSTP

A user wants to configure 4 network devices in an RSTP topology.

Ordinarily, data will flow from SW-A directly to SW-B and SW-C. SW-D data will transit SW-D. However, if something happens that breaks links, data flow can be rerouted without administrator intervention. Follow the subsequent examples to configure each switch.

Example: Configuring RSTP on SW-A

1. Sign in to the device using administrator credentials.

- 2. Go to **Redundancy** > **Layer 2 Redundancy** > **Spanning Tree**, and then click **General**.
- 3. Under **STP Mode**, select **STP/RSTP** from the drop-down list.

If this option was previously **Disabled**, numerous new features will appear.

- 4. Under Compatibility, select RSTP.
- 5. Set Bridge Priority to 28672.

This most be lower than other switches on the network to establish SW-A as the root of the topology.

6. Click **Apply** to save your changes.

The list of ports becomes available.

7. Find Port **1** on the list of ports, and then click the corresponding **[Edit]**.

The Edit Port Settings screen appears.

- 8. Under **Enable**, choose **Enabled** from the drop-down menu.
- 9. Click **Apply** to save your changes.
- 10. Find Port **3** on the list of ports, and then click the corresponding **[Edit]**.

The Edit Port Settings screen appears.

- 11. Under **Enable**, choose **Enabled** from the drop-down menu.
- 12. Click **Apply** to save your changes.
- 13. Find Port **3** on the list of ports, and then click the corresponding **[Edit]**.

The Edit Port Settings screen appears.

- 14. Under **Enable**, choose **Enabled** from the drop-down menu.
- 15. Click **Apply** to save your changes.
- 16. Find Port 4 on the list of ports, and then click the corresponding **[Edit]**.

The Edit Port Settings screen appears.

17. Under **Enable**, choose **Enabled** from the drop-down menu.

18. Click **Apply** to save your changes.

SW-A has been configured. You can now move on to configuring SW-B.

Example: Configuring RSTP on SW-B

- 1. Sign in to the device using administrator credentials.
- 2. Go to **Redundancy** > **Layer 2 Redundancy** > **Spanning Tree**, and then click **General**.
- 3. Under **STP Mode**, select **STP/RSTP** from the drop-down list.

If this option was previously **Disabled**, numerous new features will appear.

- 4. Under **Compatibility**, select **RSTP**.
- 5. Click **Apply** to save your changes.

The list of ports becomes available.

6. Find Port **1** on the list of ports, and then click the corresponding **[Edit]**.

The Edit Port Settings screen appears.

- 7. Under **Enable**, choose **Enabled** from the drop-down menu.
- 8. Find Port **2** on the list of ports, and then click the corresponding **[Edit]**.

The Edit Port Settings screen appears.

- 9. Under **Enable**, choose **Enabled** from the drop-down menu.
- 10. Click **Apply** to save your changes.

SW-B has been configured. You can now move on to configuring SW-C.

Example: Configuring RSTP on SW-C

- 1. Sign in to the device using administrator credentials.
- Go to Redundancy > Layer 2 Redundancy > Spanning Tree, and then click General.
- 3. Under **STP Mode**, select **STP/RSTP** from the drop-down list.

If this option was previously **Disabled**, numerous new features will appear.

- 4. Under Compatibility, select RSTP.
- 5. Click **Apply** to save your changes.

The list of ports becomes available.

- 6. Find Port **1** on the list of ports, and then click the corresponding **[Edit]**.
- 7. Under **Enable**, choose **Enabled** from the drop-down menu.
- 8. Find Port 2 on the list of ports, and then click the corresponding [Edit].

The Edit Port Settings screen appears.

- 9. Under **Enable**, choose **Enabled** from the drop-down menu.
- 10. Click **Apply** to save your changes.

SW-C has been configured. You can now move on to configuring SW-D.

Example: Configuring RSTP on SW-D

SW-D requires specific configuration to ensure that the correct paths are followed.

- 1. Sign in to the device using administrator credentials.
- 2. Go to **Redundancy** > **Layer 2 Redundancy** > **Spanning Tree**, and then click **General**.
- 3. Under **STP Mode**, select **STP/RSTP** from the drop-down list.

If this option was previously **Disabled**, numerous new features will appear.

- 4. Under Compatibility, select RSTP.
- 5. Click **Apply** to save your changes.

The list of ports becomes available.

6. Find Port **1** on the list of ports, and then click the corresponding **[Edit]**.

The Edit Port Settings screen appears.

- 7. Under **Enable**, choose **Enabled** from the drop-down menu.
- 8. Verify that there is a value in the **Path Cost** field. If there is no value, enter a tentative value of 20,000.

- 9. Click **Apply** to save your changes.
- 10. Find Port 4 on the list of ports, and then click the corresponding [Edit].

The Edit Port Settings screen appears.

- 11. Under **Enable**, choose **Enabled** from the drop-down menu.
- 12. Verify that there is a value in the **Path Cost** field. If there is no value, enter a tentative value of 20,000.
- 13. Click **Apply** to save your changes.
- 14. Find Port **4** on the list of ports, and then click the corresponding **[Edit]**.
- 15. Under **Enable**, choose **Enabled** from the drop-down menu.
- 16. Set Path Cost to 0.
- 17. Click **Apply** to save your changes.

With SW-D completed, all devices in the topology are complete.

Spanning Tree Settings

Menu Path: Redundancy > Spanning Tree

This page lets you configure the spanning tree settings of your device.

This page includes these tabs:

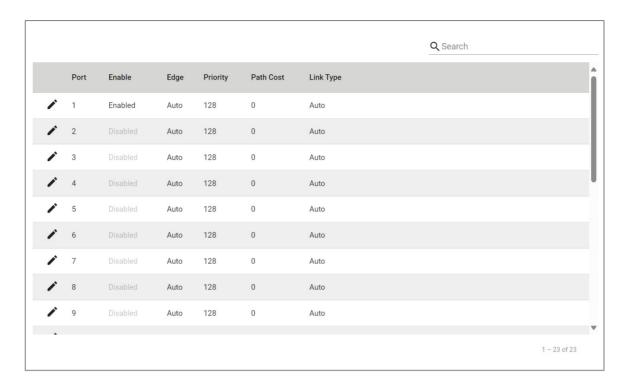
- General
- Status

Spanning Tree - General

Menu Path: Redundancy > Spanning Tree - General

This page lets you configure the STP mode and its related settings.

Spanning Tree Settings - STP/RSTP


If **STP Mode** is set to **STP/RSTP**, the following settings will appear.

UI Setting	Description	Valid Range	Default Value
STP Mode	Specify the spanning tree protocol (STP) to use.	Disabled / STP/RSTP/ MSTP	Disabled
	MSTP and GVRP are both VLAN-related functions. When VLAN changes dynamically, MSTP needs to re-converge, which can make the system unstable due to running complex operations. When both MSTP and GVRP are used together, this can result in network instability. Therefore, it is recommended that network administrators avoid enabling both MSTP and GVRP.		
Compatibility	Specify the compatibility mode to use.	STP / RSTP	RSTP
Bridge Priority	Specify the bridge priority number, which must be a multiple of 4096. Lower numbers have higher priority. A device with a higher bridge priority (e.g., a lower value) has a greater chance of being established as the root of the spanning tree topology.	Multiples of 4096 from 0 to 61440	32768
Forward Delay Time	Specify the amount of time in seconds the device waits before checking to see if it should change to a different state.	4 to 30	15
Hello Time	Specify the hello time in seconds. This is the amount of time the root waits between sending hello messages. The root of the spanning tree topology periodically sends out a "hello" message to other devices on the network to check if the topology is healthy.	1 to 2	2
Max. Age	Specify the max age in seconds. If this device is not the root, and it has not received a hello message from the root for longer than the max age time, then this device will reconfigure itself as a root. Once two or more devices on the network are recognized as a root, the devices will renegotiate a new spanning tree topology.	6 to 40	20
Error Recovery Time	Specify the error recovery time in seconds. If BPDU guard is triggered on a port, it will automatically recover to the normal state after the error recovery time.	30 to 65535	300

STP/RSTP - Port Table

If **STP Mode** is set to **STP/RSTP**, this table will appear.

UI Setting	Description
Port	Shows the port number the entry is for.
Enable	Shows whether the spanning tree protocol is enabled for the port.
Edge	Shows the current edge port configuration for the port.
Priority	Show the bridge priority number for the port.
Path Cost	Show the path cost value for the port.
Link Type	Show the link type configuration for the port.

STP/RSTP Port Table - Edit Port Settings

Menu Path: Redundancy > Spanning Tree - General

Clicking the **Edit** () icon for an port on the **Redundancy** > **Spanning Tree** - **General** page will open this dialog box. This dialog lets you edit the STP/RSTP settings for the port.

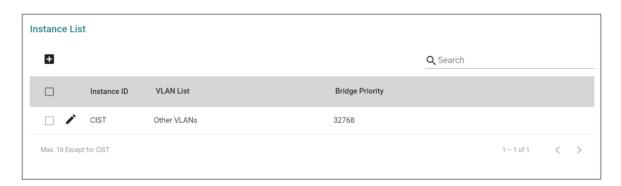
Click **APPLY** to save your changes.

UI Setting	Description	Valid Range	Default Value
Enable	Enable or disable spanning tree protocol for the port.	Enabled / Disabled	Disabled
Edge	 Select the edge port configuration for the port. Auto: Auto-detect whether to configure the port as an edge port. Yes: The port will be configured as an edge port. No: The port will not be configured as an edge port. 	Auto / Yes / No	Auto
Priority	Specify the priority of the port as a multiple of 16. Lower numbers have higher priority. A port with a higher priority (e.g., a lower value) has a greater chance of being a root port.	Multiples of 16 from 0 to 240	128
Path Cost	Specify the path cost value. If this is set to 0, the path cost value will be automatically assigned according to the port speed.	0 to 20000000	0
Link Type	 Point-to-point: Use this when the port is operating in full-duplex mode. Shared: Use this when the port is operating in half-duplex mode. Auto: Auto-detect which mode to use for the port. 	Point-to-point / Shared / Auto	Auto

UI Setting	Description	Valid Range	Default Value
Copy configurations to ports	Select the ports you want to copy this configuration to.	Drop-down list of ports	N/A

Spanning Tree Settings - MSTP

If **STP Mode** is set to **MSTP**, the following settings will appear.

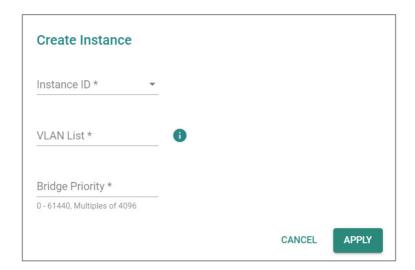


UI Setting	Description	Valid Range	Default Value
STP Mode	Specify the spanning tree protocol (STP) to use.	Disabled / STP/RSTP/ MSTP	Disabled
	MSTP and GVRP are both VLAN-related functions. When VLAN changes dynamically, MSTP needs to re-converge, which can make the system unstable due to running complex operations. When both MSTP and GVRP are used together, this can result in network instability. Therefore, it is recommended that network administrators avoid enabling both MSTP and GVRP.		
Compatibility	Specify the compatibility mode to use.	RSTP / STP / MSTP	MSTP
Forward Delay Time	Specify the amount of time in seconds the device waits before checking to see if it should change to a different state.	4 to 30	15
Hello Time	Specify the hello time in seconds. This is the amount of time the root waits between sending hello messages. The root of the spanning tree topology periodically sends out a "hello" message to other devices on the network to check if the topology is healthy.	1 to 2	2

UI Setting	Description	Valid Range	Default Value
Max. Age	Specify the max age in seconds. If this device is not the root, and it has not received a hello message from the root for longer than the max age time, then this device will reconfigure itself as a root. Once two or more devices on the network are recognized as a root, the devices will renegotiate a new spanning tree topology.	6 to 40	20
Error Recovery Time	Specify the error recovery time in seconds. If BPDU guard is triggered on a port, it will automatically recover to the normal state after the error recovery time.	30 to 65535	300
Region Name	Specify the MSTP region name.	0 to 32 characters	MSTP
Region Revision	Specify the MSTP region revision.	0 to 65535	0
Max. Hops	Specify the maximum number of hops allowed.	6 to 40	20

MSTP - Instance List

If **STP Mode** is set to **MSTP**, the following table will appear.


UI Setting	Description
Instance ID	Shows the of the instance the entry is for.
VLAN List	Show the VLAN list configured for the instance.
Bridge Priority	Show the bridge priority value for the instance.

Instance List - Create Instance

Menu Path: Redundancy > Spanning Tree - General

Clicking the **Add (** icon on the **Redundancy > Spanning Tree - General** page will open this dialog box. This dialog lets you create an MSTP instance.

Click **APPLY** to save your changes.

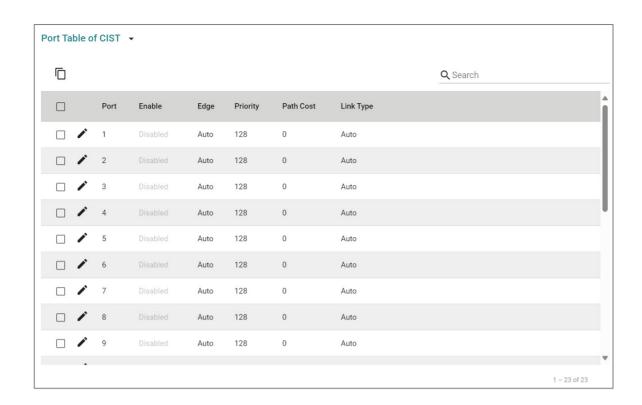
UI Setting	Description	Valid Range	Default Value
Instance ID	Select an ID for the instance.	Drop-down list of ID numbers.	N/A
VLAN List	Specify the VLAN IDs to use for the instance. You can enter multiple VLAN IDs by separating them with commas or by using ranges (e.g., 2, 4-8, 10-13).	Valid VLAN IDs	N/A
Bridge Priority	Specify the bridge priority value for the instance as a multiple of 4096. Lower values have higher priority.	Multiples of 4096 from 0 - 61440	N/A

Instance List - Edit Settings

Menu Path: Redundancy > Spanning Tree - General

Clicking the **Edit** () icon for an instance on the **Redundancy** > **Spanning Tree** - **General** page will open this dialog box. This dialog lets you edit the instance settings.

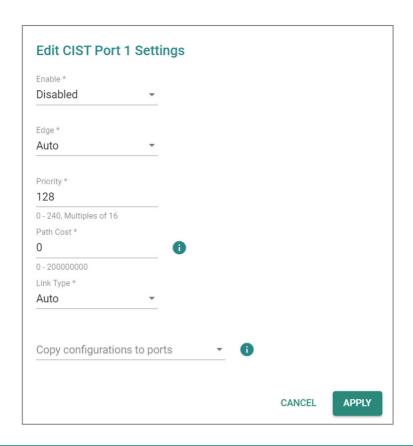
Click **APPLY** to save your changes.



UI Setting	Description	Valid Range	Default Value
VLAN List	Specify the VLAN IDs to use for the instance. You can enter multiple VLAN IDs by separating them with commas or by using ranges (e.g., 2, 4-8, 10-13).	N/A	N/A
	✓ Note This setting is not available for the CIST instance.		
Bridge Priority	Specify the bridge priority value for the instance as a multiple of 4096. Lower values have higher priority.	Multiples of 4096 from 0 - 61440	32768 for CIST N/A for other instances

Spanning Tree - Port Table

If **STP Mode** is set to **MSTP**, the following table will appear. Clicking on the drop-down list at the top left will let you select which instance's port table you want to view.


UI Setting	Description
Port	Shows the port number the entry is for.
Enable	Shows whether the spanning tree protocol is enabled for the port.
Edge	Shows the current edge port configuration for the port.
Priority	Show the bridge priority number for the port.
Path Cost	Show the path cost value for the port.
Link Type	Show the link type configuration for the port.

MSTP Port Table - Edit Port Settings

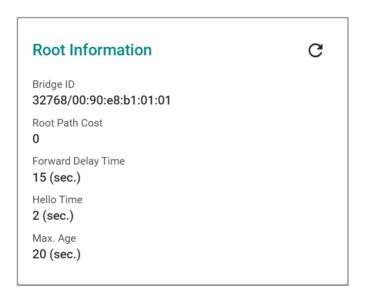
Menu Path: Redundancy > Spanning Tree - General

Clicking the **Edit** () icon for an port on the **Redundancy** > **Spanning Tree** - **General** page will open this dialog box. This dialog lets you edit the port's settings for the selected instance.

Click **APPLY** to save your changes.

UI Setting	Description	Valid Range	Default Value
Enable	Enable or disable spanning tree protocol for the port.	Enabled / Disabled	Disabled
Edge	 Select the edge port configuration for the port. Auto: Auto-detect whether to configure the port as an edge port. Yes: The port will be configured as an edge port. No: The port will not be configured as an edge port. 	Auto / Yes / No	Auto
Priority	Specify the priority of the port as a multiple of 16. Lower numbers have higher priority. A port with a higher priority (e.g., a lower value) has a greater chance of being a root port.	Multiples of 16 from 0 to 240	128
Path Cost	Specify the path cost value. If this is set to 0, the path cost value will be automatically assigned according to the port speed.	0 to 20000000	0

UI Setting	Description	Valid Range	Default Value
Link Type	 Point-to-point: Use this when the port is operating in full-duplex mode. Shared: Use this when the port is operating in half-duplex mode. Auto: Auto-detect which mode to use for the port. 	Point-to-point / Shared / Auto	Auto
Copy configurations to ports	Select the ports you want to copy this configuration to.	Drop-down list of ports	N/A

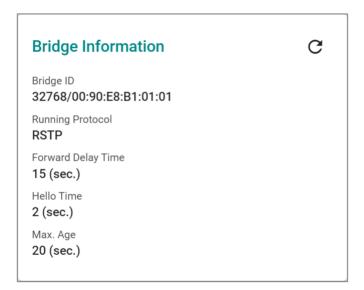

Spanning Tree - Status

Menu Path: Redundancy > Spanning Tree - Status

This page lets you view the current spanning tree status of your device.

Root Information

If **STP Mode** is set to **STP/RSTP**, this display will appear.



UI Setting	Description
Bridge ID	Shows the bridge ID.

UI Setting	Description	
Root Path Cost	Shows the root path cost.	
Forward Delay Time	Shows the forward delay time in seconds.	
Hello Time	Shows the hello time in seconds.	
Max. Age	Shows the max. age time in seconds.	

Bridge Information

If **STP Mode** is set to **STP/RSTP**, this display will appear.

UI Setting	Description	
Bridge ID	Shows the bridge ID.	
Running Protocol	Shows the current configured spanning tree protocol.	
Forward Delay Time	Shows the forward delay time in seconds.	
Hello Time	Shows the hello time in seconds.	
Max. Age	Shows the max. age time in seconds.	

Spanning Tree - Port Status

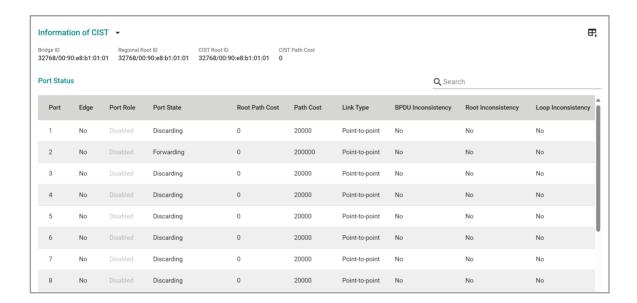
If **STP Mode** is set to **STP/RSTP**, the following table will appear.

UI Setting	Description
Port	Shows the port number the entry is for.
Edge	Shows whether this port is connected to an edge device.

UI Setting	Description	
Port Role	Shows the role for the port.	
	• Root : The port is connected directly or indirectly to the root device.	
	• Designated : The port is designated if it can send the best BPDU on the segment to which it is connected.	
	 Alternate: The alternate port receives more useful BPDU from another bridge and is a blocked port. 	
	• Backup : The backup port receives more useful BPDU from the same bridge and is a blocked port.	
	Disabled: The port is disabled.	
Port State	Show the port state.	
	• Forwarding: Traffic can be forwarded through this port.	
	Blocked: Traffic will be blocked.	
	Disabled: The port is disabled.	
Root Path Cost	Shows the total path cost to the root bridge for the port.	
Path Cost	Shows the path cost for the port.	
Link Type	Show the link type for the port.	
	• Edge Port : The port is connected to an edge device.	
	• Point-to-point : The port is connected to another bridge and is full duplex.	
	• Shared: The port is connected to another bridge and is half duplex.	

General Information

If **STP Mode** is set to **MSTP**, this display will appear.


UI Setting	Description
Running Protocol	Shows the current configured spanning tree protocol.
Forward Delay Time	Shows the forward delay time in seconds.

UI Setting	Description
Hello Time	Shows the hello time in seconds.
Max. Age	Shows the max. age time in seconds.

Spanning Tree - Port Status

If **STP Mode** is set to **MSTP**, the following table will appear.

You can use the drop-down list at the top-left to select which instance's status you want to view.

Information of Instance

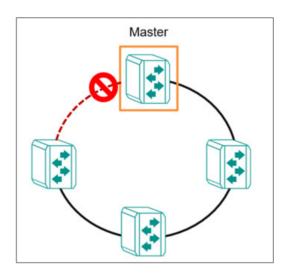
When viewing the CIST instance, this information will appear:

UI Setting	Description	
Bridge ID	Shows the bridge ID for the CIST instance.	
Regional Root ID	Shows the regional root ID for the CIST instance.	
CIST Root ID	Shows the bridge ID for the CIST instance.	
CIST Path Cost	Shows the bridge ID for the CIST instance.	

When viewing an instance other than the CIST instance, this information will appear:

UI Setting	Description	
Bridge ID	Shows the bridge ID for the instance.	
VLAN List	Shows the VLAN IDs for the instance.	
Designated Root ID	Shows the designated root ID for the instance.	
Root Path Cost	Shows the root path cost for the instance.	

Port Status


UI Setting	Description	
Port	Shows the port number the entry is for.	
Edge	Shows whether this port is connected to an edge device.	
Port Role	Shows the role for the port.	
	• Root : The port is connected directly or indirectly to the root device.	
	 Designated: The port is designated if it can send the best BPDU on the segment to which it is connected. 	
	 Alternate: The alternate port receives more useful BPDU from another bridge and is a blocked port. 	
	 Backup: The backup port receives more useful BPDU from the same bridge and is a blocked port. 	
	Disabled: MSTP is disabled for the port.	
Port State	Show the port state.	
	 Forwarding: Traffic can be forwarded through this port. 	
	Blocked: Traffic will be blocked.	
	Disabled: The port is disabled.	
Root Path Cost	Shows the total path cost to the root bridge for the port.	
Path Cost	Shows the path cost for the port.	
Link Type	Show the link type for the port.	
	• Edge Port : The port is connected to an edge device.	
	• Point-to-point : The port is connected to another bridge and is full duplex.	
	• Shared : The port is connected to another bridge and is half duplex.	
BPDU Inconsistency	Shows whether BPDU is received on a port enabled by a BPDU guard.	

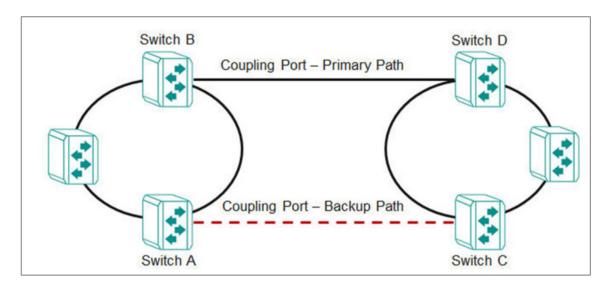
UI Setting	Description
Root Inconsistency	Shows whether the port is changed to a root port when enabled by a loop guard.
Loop Inconsistency	Shows whether a loop is detected on this port by a loop guard.

About Turbo Ring v2

Turbo Ring v2 is a high-performance, redundant network topology developed by Moxa for configuring network devices in redundant loops.

In the event of a link failure, the network can automatically reconfigure itself to maintain uninterrupted communication. Recovery times are within 20 ms for Fast Ethernet and 50 ms for Gigabit Ethernet on a network of up to 250 nodes.

Turbo Ring v2 allows connected network devices to elect a "master" switch, which blocks packets from traveling through any of the network's redundant loops and manages the network. If a section breaks, the protocol adjusts the ring so that the disconnected parts of the network establish contact. This enables continuous network operations, even when there is a fault in the network.


Furthermore, the election mechanism is redundant. If the "master" device itself fails, the network devices detect the failure and automatically elect another. The process occurs quickly, ensuring no interruption.

Turbo Ring v2 supports a backup segment connected to the redundant port (secondary port) on the ring "master". In this case, the backup path is easily identifiable for troubleshooting and replacement.

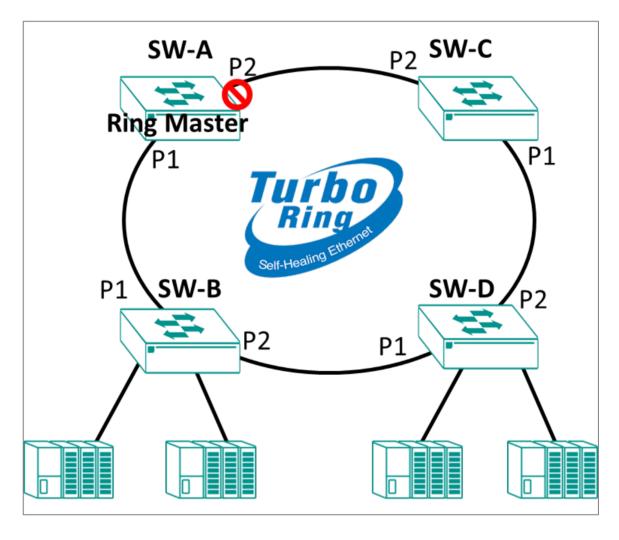
About Ring Coupling

Ring Coupling refers to the practice of coupling two rings together.

This may be useful when creating a large redundant ring is inconvenient or impractical, such as for devices in remote areas. Smaller redundant rings can be coupled together for inter-ring communication while still maintaining redundancy of constituent rings and couplings.

Ring coupling uses extra ports on each pair of coupled switches. In this example, that means:

- The (Primary) coupling port on Switch B monitors the main path and connects directly to the port on Switch D.
- The (Backup) coupling port on Switch A monitors the main path and connects directly to the port on Switch C.


✓ Note

Only one coupling (primary + backup) per ring pair.

Scenario: Using Turbo Ring in a Manufacturing Plant

In this scenario, we describe a factory using a simple ring topology.

A manufacturing plant has a complex network of machines and devices that communicate with each other to keep the production line running smoothly. To ensure that the network remains stable and reliable, the plant needs to use Turbo Ring v2 to create a fault-tolerant network by forming a ring topology.

Set up Turbo Ring v2 to connect multiple networks of machines and devices to create a fault-tolerant network and achieve continuous operations.

Ensure that switches are installed and powered. Wait to connect them until the end.

To configure this scenario, do the following:

1. Configure the settings each network device for Turbo Ring v2.

See the subsequent sections for details about how to configure each device.

2. Connect the network devices in a ring topology, using ports 1 and 2 for ring segments.

If the master network device fails, the other devices in the ring will automatically detect the problem and initiate a new election process to select a new master switch, ensuring that there is no significant interruption in communication.

Example: Configuring the Master for Turbo Ring v2 in a Manufacturing Plant

Configure the device labeled SW-A for Turbo Ring v2 in our factory example.

Make sure you have NOT connected the ring ports until after you configure Turbo Ring v2 settings. Our examples use ports **1** and **2** as ring ports.

- 1. Sign in to the device using administrator credentials.
- Go to Redundancy > Layer 2 Redundancy > Turbo Ring V2, and then click Settings.
- 3. Set Turbo Ring V2 to Enabled.
- 4. Under Ring Settings, next to Ring 1, click [Edit].

The Ring 1 Settings screen appears.

5. Configure all of the following:

Option	Value
Enabled	Enabled
Master	Enabled
Ring Port 1	1
Ring Port 2	2

Setting **Master** on multiple devices (or no devices) will have the following effects:

Master Setting	Result
Multiple devices set to Enabled	Ring election based on MAC addresses of Enabled devices
No devices set to Enabled	Ring election based on MAC addresses of all devices
Single device set to Enabled	Enabled device always master, failure of Enabled device results in ring election

6. Click **Apply** to save your changes.

Repeat this step on devices SW-B, SW-C, and SW-D, but with the **Master** setting set to **Disabled**. This process is outlined in the subsequent section.

Example: Configuring Non-Master Network Devices for Turbo Ring v2 in a Manufacturing Plant

Follow these steps to configure devices SW-B through SW-D in our scenario.

Make sure you have NOT connected the ring ports until after you configure Turbo Ring v2 settings. Our examples use ports **1** and **2** as ring ports.

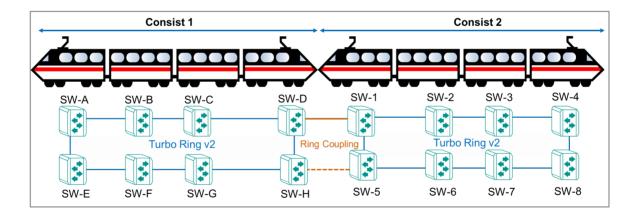
- 1. Sign in to the device using administrator credentials.
- 2. Go to **Redundancy** > **Layer 2 Redundancy** > **Turbo Ring V2**, and then click **Settings**.
- 3. Set Turbo Ring V2 to Enabled.
- 4. Under Ring Settings, next to Ring 1, click [Edit].

The Ring 1 Settings screen appears.

Option	Value
Enabled	Enabled
Master	Disabled
Ring Port 1	1
Ring Port 2	2

Setting Master on multiple devices (or no devices) will have the following effects:

Master Setting	Result	
Multiple devices set to Enabled	Ring election based on MAC addresses of Enabled devices	
No devices set to Enabled	Ring election based on MAC addresses of all device	
Single device set to Enabled	Enabled device always master, failure of Enabled device results in ring election	


6. Click **Apply** to save your changes.

Once all devices in the ring are configured and enabled, you can connect the ring ports.

Scenario: Using Turbo Ring in an On-board Train Application

In this scenario, we describe setting up Turbo Ring v2 with ring coupling between train consists.

A railway vehicle manufacturer needs to plan a new on-board network with redundancy and flexible inter-consist communication. The customer plans a ring network with Turbo Ring v2 between multiple vehicles to form one ring per consist. Multiple consists will then use ring coupling for inter-consist communication.

This structure allows for easy administration as consists are coupled and uncoupled.

To configure this scenario, do the following:

1. Configure the settings each network device for Turbo Ring v2.

See the subsequent sections for details about how to configure each device.

- 2. Connect the network devices SW-A through SW-H in a ring topology, using ports 1 and 2 for segments of the ring. Do the same for SW-1 through SW-8. Do not connect the ring coupling yet.
- 3. Configure the Primary Coupling Path path on SW-D and SW-1.

See the subsequent sections for details about how to configure ring coupling.

4. Configure the Backup Ring Coupling on SW-H and SW-5.

See the subsequent sections for details about how to configure ring coupling.

Once all devices have been configured, you can connect the ring ports and coupling ports.

Example: Configuring the Master for Turbo Ring v2 in an On-board Rail Application

Make sure you have NOT connected the ring ports until after you configure Turbo Ring v2 settings. Our examples use ports **1** and **2** as ring ports.

- 1. Sign in to the device using administrator credentials.
- Go to Redundancy > Layer 2 Redundancy > Turbo Ring V2, and then click Settings.
- 3. Set Turbo Ring V2 to Enabled.
- 4. Under Ring Settings, next to Ring 1, click [Edit].

The Ring 1 Settings screen appears.

5. Configure all of the following:

Option	Value
Enabled	Enabled
Master	Enabled
Ring Port 1	1
Ring Port 2	2

Setting **Master** on multiple devices (or no devices) will have the following effects:

Master Setting	Result	
Multiple devices set to Enabled	Ring election based on MAC addresses of Enabled devices	
No devices set to Enabled	Ring election based on MAC addresses of all devices	
Single device set to Enabled	Enabled device always master, failure of Enabled device results in ring election	

6. Click **Apply** to save your changes.

Once all devices in the ring are configured and enabled, you can connect the ring ports.

Continue to the next section to see how to configure ring coupling. Do not connect coupling ports until network devices have been configured.

Example: Configuring non-Master devices for Turbo Ring v2 in an On-board Rail Application

Make sure you have NOT connected the ring ports until after you configure Turbo Ring v2 settings. Our examples use ports **1** and **2** as ring ports.

- 1. Sign in to the device using administrator credentials.
- Go to Redundancy > Layer 2 Redundancy > Turbo Ring V2, and then click Settings.
- 3. Set Turbo Ring V2 to Enabled.
- 4. Under Ring Settings, next to **Ring 1**, click **[Edit]**.

The Ring 1 Settings screen appears.

Option	Value
Enabled	Enabled
Master	Disabled
Ring Port 1	1
Ring Port 2	2

Setting Master on multiple devices (or no devices) will have the following effects:

Master Setting	Result	
Multiple devices set to Enabled	Ring election based on MAC addresses of Enabled devices	
No devices set to Enabled	Ring election based on MAC addresses of all device	
Single device set to Enabled	Enabled device always master, failure of Enabled device results in ring election	

6. Click **Apply** to save your changes.

Once all devices in the ring are configured and enabled, you can connect the ring ports. Once all

Continue to the next section to see how to configure ring coupling. Do not connect coupling ports until network devices have been configured.

Example: Configuring the Primary Ring Coupling Between Consists

Both network devices that make up the ring coupling must be configured as coupling devices.

- Make sure that you have configured both rings in the scenario.
- Do not connect the coupling ports until completing setup on both devices. Our scenario assumes port 5 will serve as coupling port.

First we will configure SW-D, then we will configure SW-1.

The procedure on each device is identical. To configure each device, do the following:

- 1. Sign in to the device using administrator credentials.
- 2. Go to Redundancy > Layer 2 Redundancy > Turbo Ring V2, and then click Settings.
- 3. Under Ring Coupling Settings, click **[Edit]**.

The Ring Coupling Settings screen appears.

Option	Value
Enabled	Enabled
Coupling Mode	Coupling Primary Path
Coupling Port	5

5. Click **Apply** to save your changes.

The device has been configured as a primary ring coupling.

Repeat this procedure on SW-1. Once both devices have been configured, connect the ring coupling ports. Once both devices are configured and connected, you can move on to configuring the backup coupling.

Example: Configuring the Backup Ring Coupling Between Consists (TN Series)

Both network devices that make up the backup ring coupling must be configured as coupling devices.

- Make sure that you have configured both rings in the scenario.
- Do not connect the coupling ports until completing setup on both devices. Our scenario assumes port **5** will serve as coupling port.

First we will configure SW-H, then we will configure SW-5.

The procedure on each device is identical. To configure each device, do the following:

- 1. Sign in to the device using administrator credentials.
- Go to Redundancy > Layer 2 Redundancy > Turbo Ring V2, and then click Settings.
- 3. Under Ring Coupling Settings, click / [Edit].

The Ring Coupling Settings screen appears.

Option	Value
Enabled	Enabled

Option	Value
Coupling Mode	Coupling Backup Path
Coupling Port	5

5. Click **Apply** to save your changes.

The device has been configured as a backup ring coupling.

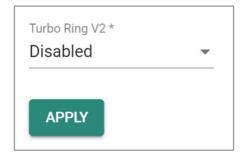
Repeat this procedure on SW-5. Once both devices have been configured, connect the ring coupling ports. Once both devices are configured and connected, your coupling configuration will be complete.

Turbo Ring V2

Menu Path: Redundancy > Turbo Ring V2

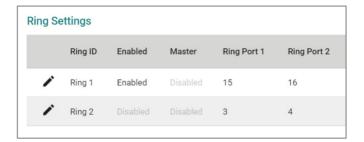
This page lets you set up and configure Turbo Ring v2 redundancy for your device.

This page includes these tabs:


- Settings
- Status

Turbo Ring V2 - Settings

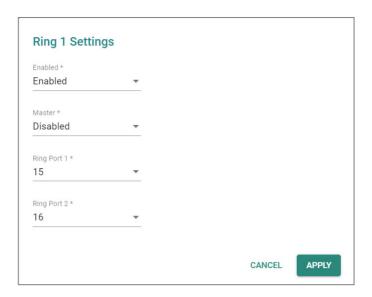
Menu Path: Redundancy > Turbo Ring V2 - Settings


This page lets you configure the Turbo Ring V2 settings.

Turbo Ring V2 Settings

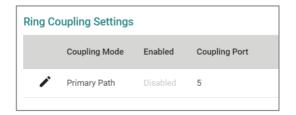
UI Setting	Description	Valid Range	Default Value
Turbo Ring V2	Enable or disable Turbo Ring V2 for the device.	Enabled / Disabled	Disabled

Ring Settings


UI Setting	Description
Ring ID	Shows the ID of the ring the entry is for.
Enabled	Shows whether Turbo Ring V2 is enabled for the ring.
Master	Shows whether the device is designated as the master for the ring.
Ring Port 1	Shows which port will act as ring port 1. If this device is designated as the master for the ring, this will be the primary ring connection.
Ring Port 2	Shows which port will act as ring port 2. If this device is designated as the master for the ring, this will be the backup ring connection and will be blocked normally.

Edit Ring Settings

Menu Path: Redundancy > Turbo Ring V2 - Settings

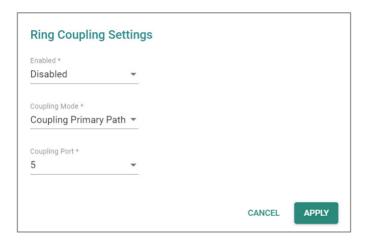

Clicking the **Edit** () icon for a ring on the **Redundancy** > **Turbo Ring V2 - Settings** page will open this dialog box. This dialog lets you edit the Turbo Ring V2 settings for the ring.

Click **APPLY** to save your changes.

UI Setting	Description	Valid Range	Default Value
Enabled	Enable or disable Turbo Ring V2 for the ring.	Enabled / Disabled	Disabled
Master	Enable or disable whether the device will be designated as the master for the ring.	Enabled / Disabled	Disabled
Ring Port 1	Specify which port will act as ring port 1. If this device is designated as the master for the ring, this will be the primary ring connection.	Drop-down list of ports	1
Ring Port 2	Specify which port will act as ring port 2. If this device is designated as the master for the ring, this will be the backup ring connection and will be blocked normally.	Drop-down list of ports	2

Ring Coupling Settings

UI Setting	Description
Coupling Mode	Shows coupling mode the entry is for.


UI Setting	Description
Enabled	Shows whether ring coupling is enabled or disabled.
Coupling Port	Shows the port used for ring coupling.

Edit Ring Coupling Settings

Menu Path: Redundancy > Turbo Ring V2 - Settings

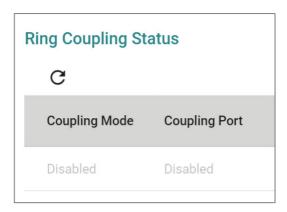
Clicking the **Edit** () icon for an entry on the **Redundancy** > **Turbo Ring V2** - **Settings** page will open this dialog box. This dialog lets you edit the ring coupling settings for the entry.

Click **APPLY** to save your changes.

UI Setting	Description	Valid Range	Default Value
Enabled	Enable or disable ring coupling for the device.	Enabled / Disabled	Disabled
Coupling Mode	Specify whether this device will be designated as primary or backup path for ring coupling.	Coupling Primary Path / Coupling Backup Path	Coupling Primary Path
Coupling Port	Specify the port to use for ring coupling.	Drop-down list of ports	5

Turbo Ring V2 - Status

Menu Path: Redundancy > Turbo Ring V2 - Status


This page lets you view the Turbo Ring V2 ring and ring coupling status.

Ring Status

Ring Status	S				
G					
Ring ID	Master ID	Status ↑	Master	Ring Port 1	Ring Port 2
Ring 1	00:00:00:00:00	Disabled	Slave	Disabled	Disabled
Ring 2	00:00:00:00:00	Disabled	Slave	Disabled	Disabled

UI Setting	Description
Ring ID	Shows the ID of the ring the entry is for.
Master ID	Shows the MAC address of the ring master.
Status	 Shows the status of the ring. Healthy: The ring and the ports are working properly. Break: One or more rings have been broken.
Master	Shows whether the device is configured as a master or slave for the ring.
Ring Port 1	Shows which port will act as ring port 1. If this device is designated as the master for the ring, this will be the primary ring connection.
Ring Port 2	Shows which port will act as ring port 2. If this device is designated as the master for the ring, this will be the backup ring connection and will be blocked normally.

Ring Coupling Status

UI Setting	Description
Coupling Mode	Shows whether the device is the primary or backup path for ring coupling.
Coupling Port	Shows the port used for ring coupling.

About MRP (Media Redundancy Protocol)

MRP (Media Redundancy Protocol) is a network protocol based on the IEC 62439-2 that allows users to create a redundant ring system. With a recovery time of less than 200 ms, it can support up to 50 devices in each ring.

MRP includes the following roles:

MRM (Media Redundancy Manager)

MRM, also known as the Ring Manager, is a node in the network topology that manages and monitors the health of the entire ring. There is only one MRM in the network. In the event of a Link Down scenario, the MRM diagnoses the issue and notifies all MRCs (Media Redundancy Clients) to flush their MAC address table and relearn the path. Additionally, the MRM changes the port status of the primary port from blocking to forwarding to restore connectivity.

MRC (Media Redundancy Client)

MRC, also known as the Ring Client, is a node in the network topology that is monitored by the MRM (Media Redundancy Manager). However, the MRCs do not solely rely on the MRM to detect the health of the ring, they also automatically notify the MRM in the event of a Link Down or Recovery situation. The MRC flushes its MAC address table and relearns the path when requested by the MRM.

MIM (Media Redundancy Interconnection Manager)

The function of the MIM is to observe and to control the redundant interconnection topology in order to react on interconnection faults. To cover a maximum of applications, two detection methods are provided by this international standard. The MIM can observe the interconnection topology by either:

- **LC-mode (Link check mode)**: The MRP interconnection manager can observe the interconnection topology by reacting directly on interconnection port link change notification messages
- RC-mode (Ring check mode): The MRP interconnection manager can observe
 the interconnection topology by sending test frames on the interconnection port
 over the connected rings and receiving them over its ring ports, checking in both
 directions

MIC (Media Redundancy Interconnection Client)

The other three nodes in the interconnection topology have the role of media redundancy interconnection clients (MIC), in addition to the role of a MRC or MRM. The MIC reacts on received reconfiguration frames from the MIM, it can detect and signal link changes of its interconnection port, and it can issue link change notification messages.

Configuring Ring Managers and Clients

MRP Managers and Clients must be configured before the rings can be used.

- Determine which devices will be the Manager and the Clients. There can only be a single manager.
- Do not connect any of the devices until configuration of all devices is complete.

• Do not use any of the ring ports until configuration is completed. Do not use these ports for administration, as applying the chain configuration to these ports will disconnect you from the web GUI.

Choose a device to configure and do the following:

- 1. Sign in to the device using administrator credentials.
- 2. Go to **Redundancy** > **Layer 2 Redundancy** > **MRP**, and then click **Settings**.
- 3. Under Media Redundancy Protocol, choose **Enabled** from the drop-down menu.
- 4. Specify the following based on the **Role**:

Ring Manager Option	Ring Manager Value
Role	Ring Manager
VLAN ID	Specify the VLAN ID for the ring
Domain UUID	Choose either Default or PROFITNET (Siemens) according to your network configuration
React on Link Change	It is recommended to set this to Enabled . This setting allows the Ring Manager to quickly respond to topology changes, both when a link goes down and when the original topology is restored.
Ring Port 1	Specify the first redundant ring port
Ring Port 2	Specify the second redundant ring port

Ring Client Option	Ring Client Value
Role	Ring Client
VLAN ID	Specify the VLAN ID for the ring
Domain UUID	Choose either Default or PROFITNET (Siemens) according to your network configuration
Ring Port 1	Specify the first redundant ring port
Ring Port 2	Specify the second redundant ring port

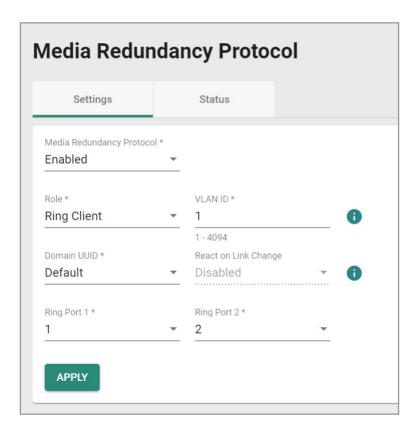
5. Click **Apply** to save your changes.

Once all devices are configured, you can connect the ring ports.

MRP

Menu Path: Redundancy > MRP

This page lets you to configure the MRP parameters of the switch and view the MRP protocol operation status of the switch.

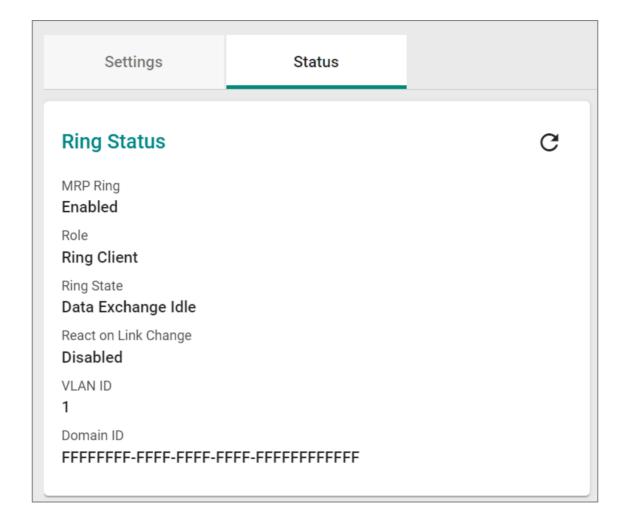

This page includes these tabs:

- Settings
- Status

MRP - Settings

Menu Path: Redundancy > MRP - Settings

This page lets you to enable and configure MRP for your device.


UI Setting	Description	Valid Range	Default Value
Media Redundancy Protocol	Enable or disable Media Redundancy Protocol (MRP) for the device.	Enabled / Disabled	Disabled
Role	 Ring Client: The device will act as a ring client. Ring Manager: The device will act as a ring manager, and can manage and monitor the ring's health status. 	Ring Client / Ring Manager	Ring Client
VLAN ID	Specify the VLAN ID to use for MRP. Note The VLAN ID should align with the ring port settings.	1 to 4094	1
Domain UUID	Select whether to use a default or PROFINET domain UUID.	Default / PROFINET	Default
React on Link Change (If Role is Ring Manager)	Enable or disable reacting on link change. Enable reaction on link change for faster recovery speeds.	Enabled / Disabled	Enabled
Ring Port 1	Specify the port to use as the 1st redundant port.	Drop-down list of ports	N/A
Ring Port 2	Specify the port to use as the 2nd redundant port.	Drop-down list of ports	N/A

MRP - Status

Menu Path: Redundancy > MRP - Status

This page lets you view the overall status of the MRP ring and ring ports.

Ring Status

UI Setting	Description
MRP Ring	Shows whether the MRP ring is enabled.
Role	Shows the role of the device.
Ring State	Shows the current ring state.
React on Link Change	Shows whether reaction on link change is enabled.
VLAN ID	Shows the VLAN ID for the ring.
Domain ID	Shows the domain UUID for the ring.

MRP Port Status List

Interface	Port	Port Status
Ring Port 1	1	Link Down
Ring Port 2	2	Forwarding

UI Setting	Description
Interface	Shows the interface the entry is for.
Port	Shows the port used for the interface.
Port Status	Shows the port status of the interface.

Network Service

Menu Path: Network Service

This section lets you configure your device's network services.

This section includes these pages:

- DHCP Server
- DHCP Relay Agent
- DNS Server

Configuring DHCP Server Functions

Moxa routers and L2 switches support DHCP server functionality, allowing autoassignment of IP configurations.

Introduction to DHCP

The Dynamic Host Configuration Protocol (DHCP) automatically provides an Internet Protocol (IP) host with an IP configuration. This can include IP address, subnet mask, DNS Configuration, and default gateway. among others.

This ensures that connected clients do not need manual IP configuration, saving time and increasing flexibility in deployments.

Overview of DHCP Server Configuration

The integrated DHCP server of the device can operate in one of three modes.

DHCP Pool

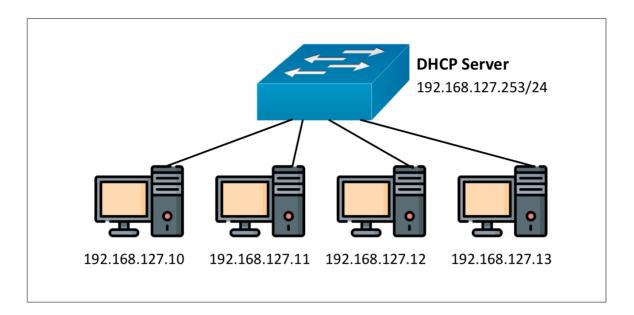
This mode automatically assigns IP addresses to connected devices from a userconfigured IP address pool.

MAC-based IP Assignment (Static IP)

MAC-based IP assignment, also known as static IP assignment, assigns specified IP addresses to MAC addresses of network devices. This ensures that devices maintain the same IP address, regardless of factors like connection order or lease duration. By configuring a DHCP server with table of MAC addresses and corresponding IP addresses, administrators can have more control over IP allocation, and by extension, device management and security.

✓ Note

DHCP Pool and MAC-based IP Assignment can be active at the same time.


Port-based IP Assignment

Port-based IP assignment allocates IP addresses by the physical port on the device (Port 1, 2 etc.). This allows pre-assignment based on port, ensuring the device connected to each port will always have the same IP address.

Configuring Dynamic IP Address Assignment (DHCP Server Pool)

In this example, we configure a sample scenario with a pool of automatically-assigned IP addresses.

This scenario explains how automatically assign IP addresses to four PC clients on a subnet. We configure a switch act as DHCP server to automatically assign addresses, in In this scenario, the switch acts as a DHCP server for the 192.168.127.xxx IP subnet and PCs are DHCP clients.

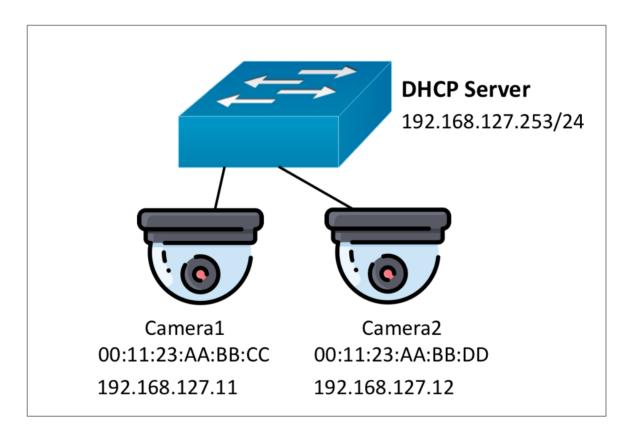
- 1. Sign in to the device using administrator credentials.
- 2. Go to Network Service > DHCP Server > General.
- 3. Under Mode, make sure DHCP/MAC-based IP Assignment is selected.
- 4. Under **DHCP Pool Settings**, select **Enabled** from the drop-down list.

The IP Address Pool configuration options appear.

5. Configure all of the following:

Option	Value
Starting IP Address	192.168.127.10
Subnet Mask	24 (255.255.255.0)
Ending IP Address	192.168.127.20
Default Gateway	192.168.127.253
Lease Time	1440
DNS Server IP Address 1	8.8.8.8
DNS Server IP Address 2	8.8.8.4
NTP Server IP Address	8.8.8.10

6. Click **Apply** to save your settings.


✓ Note

You can delete entries by going to Network Service > DHCP Server > General, and then under DHCP Pool Settings, choose Disabled from the drop-down menu.

Reserving IP Addresses for Specific Devices (MAC-based IP Assignment)

This scenario outlines how to reserve and automatically assign IP addresses for two cameras, ensuring that each camera always receives the same address.

We will configure the switch using MAC-based IP reservation and assignment.

- 1. Sign in to the device using administrator credentials.
- 2. Go to Network Service > DHCP Server > General.
- 3. Under **Mode**, choose **DHCP/MAC-based IP Assignment** from the drop-down list, and then click **Apply**.

4. In the table below **Mode**, click **1**[Add].

The Create Entry screen appears.

5. Configure all of the following:

Option	Value
Enable	Enabled
Hostname	Camera1
IP Address	192.168.127.11
Subnet Mask	24 (255.255.255.0)
MAC Address	00:11:23:AA:BB:CC
Default Gateway	192.168.127.253
Lease Time	1440
DNS Server IP Address1	8.8.8.8
DNS Server IP Address1	8.8.8.4
NTP Server IP Address	8.8.8.10

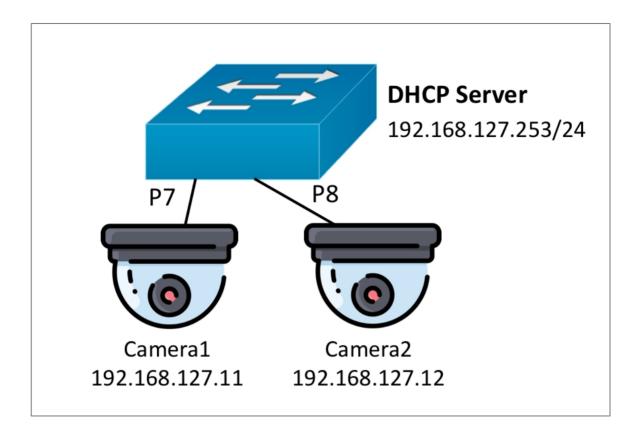
The entry will appear in the table.

6. Repeat this process for the second camera, with the following settings:

Option	Value
Enable	Enabled
Hostname	Camera2
IP Address	192.168.127.12
Subnet Mask	24 (255.255.255.0)
MAC Address	00:11:23:AA:BB:CC

Option	Value
Default Gateway	192.168.127.253
Lease Time	1440
DNS Server IP Address1	8.8.8.8
DNS Server IP Address1	8.8.8.4
NTP Server IP Address	8.8.8.10

The entry will appear in the table.



You can delete entries by going to Network Service > DHCP Server > General, and then in the table at the bottom of the page, selecting one or more entries by clicking the corresponding checkbox, and then clicking [Delete].

Configuring Port-based IP Assignment

This scenario assigns IP addresses to cameras based on their port of connection.

We will configure the switch as a DHCP server that uses port index-based IP assignments for each of the cameras. All ports will always assign the same IP addresses.

- 1. Sign in to the device using administrator credentials.
- 2. Go to Network Service > DHCP Server > General.
- 3. Under **Mode**, choose **Port-based IP Assignment** from the drop-down list, and then click **Apply**.
- 4. In the table below **Mode**, click **1**[Add].
- 5. Configure all of the following:

Option	Value
Enable	Enabled
Port	7
IP Address	192.168.127.11
Subnet Mask	24 (255.255.255.0)
Default Gateway	192.168.127.253

Option	Value
Lease Time	1440
DNS Server IP Address1	8.8.8.8
DNS Server IP Address1	8.8.8.4
NTP Server IP Address	8.8.8.10
Hostname	Camera1

The entry will appear in the table.

6. Repeat this process for the second camera, with the following settings:

Option	Value
Enable	Enabled
MAC Address	00:11:23:AA:BB:CC
IP Address	192.168.127.12
Subnet Mask	24 (255.255.255.0)
Default Gateway	192.168.127.253
Lease Time	1440
DNS Server IP Address1	8.8.8.8
DNS Server IP Address1	8.8.8.4
NTP Server IP Address	8.8.8.10
Hostname	Camera2

The entry will appear in the table.

✓ Note

You can delete ports from the list at the bottom of the page by clicking the corresponding checkbox, and then clicking [Delete].

Note

You can delete ports from the list by clicking on Port-based IP Assignment, clicking the corresponding checkbox, and then clicking [Delete].

DHCP Server

Menu Path: Network Service > DHCP Server

This page lets you configure the DHCP server settings.

This page includes these tabs:

- General
- Lease Table
- Classless Static Route Table

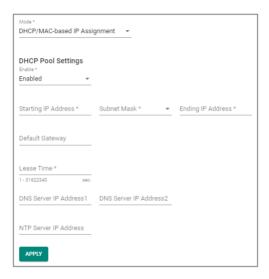
✓ Note

MX-NOS Rail V1.0 supports the following options:

- DHCP Client option 1/3/6/53/55/61/66/67/255
- DHCP Server option 1/3/6/7/12/15/42/51/53/54/*55/121/255
 - *55: The DHCP server will not include option 55 in its outgoing packets, but it will process option 55 if it is received from a DHCP client.

DHCP Server - General

Menu Path: Network Service > DHCP Server - General

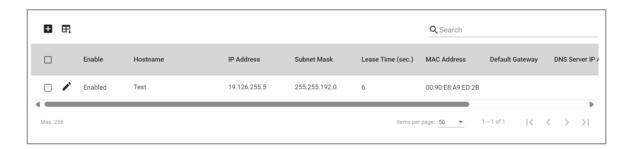

This page lets you configure the DHCP server mode and port settings.

O Limitations

Up to 256 DHCP/MAC-based IP assignments can be created.

DHCP Server Settings

If **Mode** is set to **DHCP/MAC-based IP Assignment**, and **DHCP Pool Settings** is **Enabled**, these settings will appear.



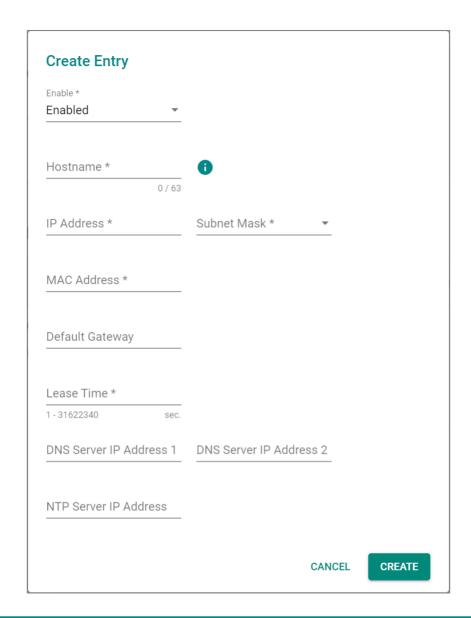
UI Setting	Description	Valid Range	Default Value
Mode	Select a DHCP server mode.	Disabled / DHCP/MAC-based IP Assignment / Port-based IP Assignment	Disabled
Enable	Enable or disable use of a DHCP pool.	Enabled / Disabled	Disabled
Starting IP Address	Specify the starting IP address of the DHCP IP pool.	Valid unicast IP address	N/A
Subnet Mask	Specify the subnet mask for DHCP clients in the pool.	Valid subnet mask	N/A
Ending IP Address	Specify the ending IP address of the DHCP IP pool.	Valid unicast IP address	N/A
Default Gateway	Specify the default gateway to use for DHCP clients in the pool.	Valid IP address	N/A

UI Setting	Description	Valid Range	Default Value
Lease Time	Specify how long in seconds a device can keep the assigned IP address before it needs to renew the lease with the DHCP server.	1 to 31622340	N/A
DNS Server IP Address1	Specify the IP address of the first DNS server to use for DHCP clients in the pool.	Valid IP address	N/A
DNS Server IP Address2	Specify the IP address of the second DNS server to use for DHCP clients in the pool.	Valid IP address	N/A
NTP Server IP Address	Specify the IP address of the NTP server to use for DHCP clients in the pool.	Valid IP address	N/A

DHCP Server List - MAC-based Assignment

If **DHCP Server Mode** is set to **DHCP/MAC-based IP Assignment**, this table will appear.

UI Setting	Description
Enable	Shows whether MAC-based IP assignment is enabled for the MAC address.
Hostname	Shows the hostname to use for clients that connect to the MAC address.
IP Address	Shows the IP address assigned to clients that connect to the MAC address.
Subnet Mask	Shows the subnet mask assigned to clients that connect to the MAC address.
Lease Time	Shows the lease time in seconds for IP assignments through the MAC address.
MAC Address	Shows the MAC address of the MAC-based IP assignment.
Default Gateway	Shows the default gateway for clients that connect to the MAC address.


UI Setting	Description
DNS Server IP Address1	Shows the IP address of the first DNS server to use for clients that connect to the MAC address.
DNS Server IP Address2	Shows the IP address of the second DNS server to use for clients that connect to the MAC address.
NTP Server IP Address	Shows the NTP server to use for clients that connect to the MAC address.

MAC-based IP Assignment - Creating a DHCP Server Entry

Menu Path: Network Service > DHCP Server - General

Clicking the Add () icon on the Network Service > DHCP Server - General page when DHCP Server Mode is set to DHCP/MAC-based IP Assignment will open this dialog box. This dialog lets you create a new MAC-based IP assignment.

Click **CREATE** to save your changes and add the new account.

UI Setting	Description	Valid Range	Default Value
Enable	Enable or disable the MAC-based IP assignment entry.	Enabled / Disabled	Enabled
Hostname	Specify a hostname for the IP assignment.	Drop-down list of ports	N/A
IP Address	Specify the IP address for the IP assignment.	Valid IP address	N/A
Subnet Mask	Select the subnet mask for the IP assignment.	Drop-down list of subnet masks	N/A
MAC Address	Specify the MAC address that this IP assignment will apply to.	Valid MAC address	

UI Setting	Description	Valid Range	Default Value
Default Gateway	Specify the default gateway for the IP assignment.	Valid IP address	N/A
Lease Time	Specify the lease time in seconds for the IP assignment.	1 to 31622340	
DNS Server IP Address1	Specify the IP address of the first DNS server to use for the IP assignment.	Valid IP address	N/A
DNS Server IP Address2	Specify the IP address of the second DNS server to use for the IP assignment.	Valid IP address	N/A
NTP Server IP Address	Specify the NTP server to use for the IP assignment.	Valid IP address	N/A

DHCP Server List - Port-based Assignment

If **DHCP Server Mode** is set to **Port-based IP Assignment**, this table will appear.

UI Setting	Description	
Port	Shows the port number the entry is for.	
Enable	Shows whether port-based IP assignment is enabled for the port.	
IP Address	Shows the IP address assigned to clients that connect to the port.	
Subnet Mask	Shows the subnet mask assigned to clients that connect to the port.	
Lease Time	Shows the lease time in seconds for IP assignments through the port.	
Default Gateway	Shows the default gateway for clients that connect to the port.	
DNS Server IP Address1	Shows the IP address of the first DNS server to use for clients that connect to the port.	
DNS Server IP Address2	Shows the IP address of the second DNS server to use for clients that connect to the port.	

UI Setting	Description
NTP Server IP Address	Shows the NTP server to use for clients that connect to the port.
Hostname	Shows the hostname to use for clients that connect to the port.
Domain Name	Shows the domain name to use for clients that connect to the port.
Log Server IP Address	Shows the IP address of the log server to use for clients that connect to the port.

Port-based Assignment - Creating a DHCP Server Entry

Menu Path: Network Service > DHCP Server - General

Clicking the Add () icon on the Network Service > DHCP Server - General page will open this dialog box. This dialog lets you create a new port-based IP assignment.

Click **CREATE** to save your changes and add the new account.

UI Setting	Description	Valid Range	Default Value
Enable	Enable or disable the port-based IP assignment entry.	Enabled / Disabled	Enabled

UI Setting	Description	Valid Range	Default Value
Port	Select which port the DHCP server will assign an IP address for.	Drop-down list of ports	N/A
IP Address	Specify the IP address assigned to clients that connect to the port.	Valid IP address	N/A
Subnet Mask	Select the subnet mask assigned to clients that connect to the port.	Drop-down list of subnet masks	N/A
Lease Time	Specify the lease time in seconds for IP assignments through the port.	1 to 31622340	N/A
Default Gateway	Specify the default gateway for clients that connect to the port.	Valid IP address	N/A
DNS Server IP Address1	Specify the IP address of the first DNS server to use for clients that connect to the port.	Valid IP address	N/A
DNS Server IP Address2	Specify the IP address of the second DNS server to use for clients that connect to the port.	Valid IP address	N/A
NTP Server IP Address	Specify the NTP server to use for clients that connect to the port.	Valid IP address	N/A
Hostname	Specify the hostname to use for clients that connect to the port.	Up to 63 characters	N/A
Domain Name	Specify the domain name to use for clients that connect to the port.	Up to 63 characters	N/A
Log Server IP Address	Specify the IP address of the log server to use for clients that connect to the port.	Valid IP address	N/A

Lease Table

Menu Path: Network Service > DHCP Server - Lease Table

This page lets you view the IP address lease table.

Lease Table

UI Setting	Description
Hostname	Shows the hostname of the client.
IP Address	Shows the IP address leased to the client.
MAC Address	Shows the MAC address of the client.
Time left	Shows the amount of time left in seconds on the DHCP lease for the client. (static) means the IP address is statically assigned.

Classless Static Route Table

Menu Path: Network Service > DHCP Server - Classless Static Route Table

This page lets you view the classless static route table and configure related settings.

O Limitations

Up to 10 classless static routes can be created.

Classless Static Route Table Settings

UI Setting	Description	Valid Range	Default Value
Mode	Select the mode to use for classless static routing.	Disabled / Port- based IP Assignment	Disabled
Default Gateway (If Mode is Port- based IP Assignment)	Enable or disable use of a default gateway for classless static routes. When enabled, routes will use the default gateway address for the relevant port defined in the General tab.	Enabled / Disabled	Disabled

Classless Static Route Table

UI Setting	Description
IP Address	Shows the IP address of the packet's final destination for the route.
Subnet Mask	Shows the subnet mask of the destination address for the route.
Gateway	Shows the next hop or the neighboring device's IP address to which the packet is forwarded for the route.
Member Port	Shows the member ports that are using the route.

Creating a Classless Static Route Entry

Menu Path: Network Service > DHCP Server - Classless Static Route

Clicking the Add () icon on the Network Service > DHCP Server - Classless Static Route page will open this dialog box. This dialog lets you create an entry for the classless static route.

Click **CREATE** to save your changes and add the new entry.

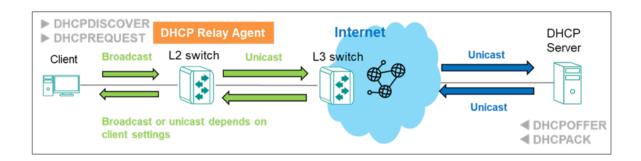
UI Setting	Description	Valid Range	Default Value
IP Address	Specify the IP address of the packet's final destination.	Valid IP address	N/A
Subnet Mask	Specify the subnet mask of the destination address.	Drop-down list of subnet masks	N/A
Gateway	Specify the next hop or the neighboring device's IP address to which the packet is forwarded.	Valid Gateway	N/A
Member Port	Specify the ports that are using the port-based IP assignment.	Drop-down list of ports	N/A

Configuring DHCP Relay Agent

DHCP Relays can help reduce broadcast DHCP requests by relaying DHCP requests between networks.

About DHCP Relay Agents

DHCP relay agents can provide a bridge for DHCP communication across network segments.


DHCP Relays on L3 Switches

A DHCP Relay Agent on an L3 switch converts broadcast DHCP packets to unicast packets, and then routes them to the DHCP server.

DHCP Relays on L2 Switches

On an L2 switch, the switch would convert DHCP broadcast packets to DHCP unicast packets, forward them to an L3 switch, which would then route them the DHCP server.

Configuring DHCP Relay Agent

You can configure your switch to serve as a DHCP relay agent.

- 1. Sign in to the device using administrator credentials.
- 2. Go to Network Service > DHCP Relay Agent > General.
- 3. Under **DHCP Relay Agent**, choose **Enabled** from the drop-down menu.
- Specify up to 4 addresses in the **DHCP Server Address** field, and then click **Apply** to save changes.

✓ Note

If DHCP Server Address is left blank, DHCP servers will be unable to reply to packets sent from connected clients.

5. To configure a **Port**, click the corresponding **[Edit]** button.

The **Edit Port** screen appears.

6. Specify all of the following:

Option	Value
Relay	To enable the relay, choose Enabled .
	To disable the relay while retaining settings, choose Disabled .
Status	To accept incoming DHCP packets from DHCP servers, choose Trusted from the drop-down menu.

7. Click **Apply** to save your changes.

✓ Note

You can copy your settings to other ports by selecting them from the drop-down menu.

Configuring Option 82

Option 82 provides additional information in relayed packets that can make DHCP server address allocation more effective. If your DHCP server supports it, it can provide additional information that can facilitate context-aware address allocation, as well as more flexible tracking and management.

To configure Option 82:

- 1. Sign in to the device using administrator credentials.
- Go to Network Service > DHCP Relay Agent > General, and then click Option 82.
- 3. Specify the ID that will be sent to the relay by clicking **Remote ID Type**, and then choosing an option from the drop-down menu.

For the **Other** option, you can specify a static value of up to 64 characters.

4. To enable **Option 82** on a given **Port**, click **[Edit]** next to the corresponding **Port**.

✓ Note

The Edit Port screen appears.

5. Click **Option 82** and choose **Enable** from the drop-down menu.

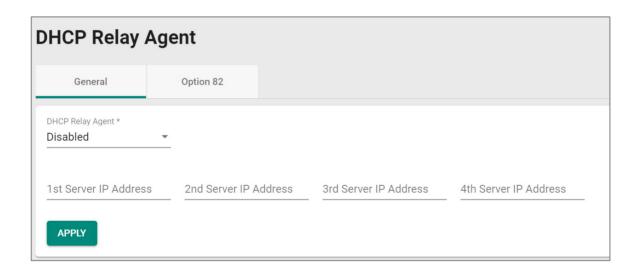
6. Click **Apply** to save your settings.

DHCP Relay Agent

Menu Path: Network Service > DHCP Relay Agent

This page lets you manage the DHCP Relay Agent feature of your device.

This page includes these tabs:


- General
- Option 82

DHCP Relay Agent - General

Menu Path: Network Service > DHCP Relay Agent - General

This page lets you enable the DHCP Relay Agent feature and configure its related settings.

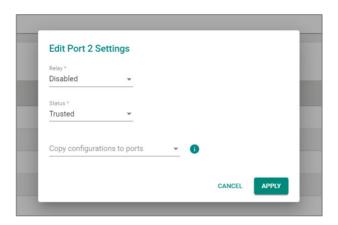
DHCP Relay Agent Settings

UI Setting	Description	Valid Range	Default Value
DHCP Relay Agent	Enable or disable the DHCP Relay Agent feature on your device.	Enabled / Disabled	Disabled

UI Setting	Description	Valid Range	Default Value
1st/2nd/3rd/4th Server IP Address	Specify the 1st, 2nd, 3rd, and 4th server IP address.	Valid IP address	N/A

DHCP Relay Agent - Port List

	Port	Relay	Status
•	1	Disabled	Trusted
•	2	Disabled	Trusted
•	3	Disabled	Trusted
•	4	Disabled	Trusted
•	5	Disabled	Trusted
/	6	Disabled	Trusted

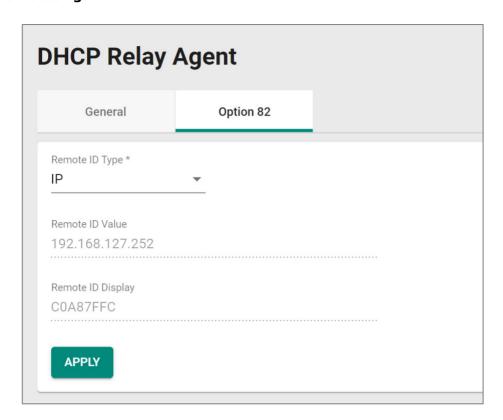

UI Setting	Description
Port	Shows the port number the entry is for.
Relay	Shows whether the relay function is enabled for the port.
Status	Shows the status of the relay on the port.

DHCP Relay Agent - Edit Port Settings

Menu Path: Network Service > DHCP Relay Agent - General

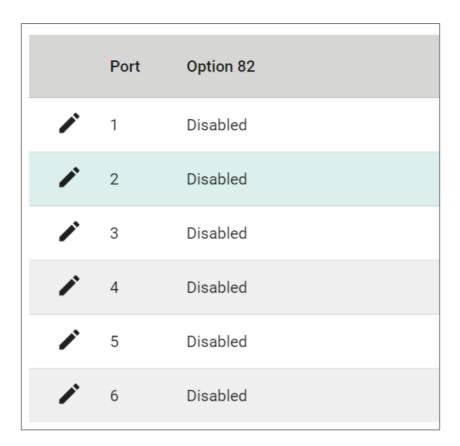
Clicking the **Edit** () icon for a port on the **Network Service** > **DHCP Relay Agent** - **General** page will open this dialog box. This dialog lets you manage DHCP relay settings for the port.

Click **APPLY** to save your changes.


UI Setting	Description	Valid Range	Default Value
Relay	Enable or disable the relay function for the port.	Enabled / Disabled	Disabled
Status	 Specify the relay status for the port. Trusted: DHCP packets with Option 82 or with a non-zero giaddr will be accepted. Untrusted: DHCP packets with Option 82 or with a non-zero giaddr will be discarded. 	Trusted / Untrusted	Trusted
Copy configurations to ports	Select the ports you want to copy this configuration to.	Drop-down list of ports	N/A

Option 82

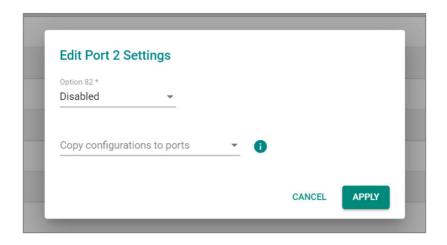
Menu Path: Network Service > DHCP Relay Agent - Option 82


This page lets you manage Option 82 and its related settings.

Option 82 Settings

UI Setting	Description	Valid Range	Default Value
Remote ID Type	Specify the remote ID type.	IP / MAC / Client ID / Other	IP
Remote ID Value	If the Remote ID Type is Other , specify the remote ID value to use. For all other types, this shows the remote ID value for the selected remote ID type and cannot be edited.	N/A	Varies depending on different options
Remote ID Display	Shows the remote ID. This field is read-only and cannot be changed.	N/A	Remote ID

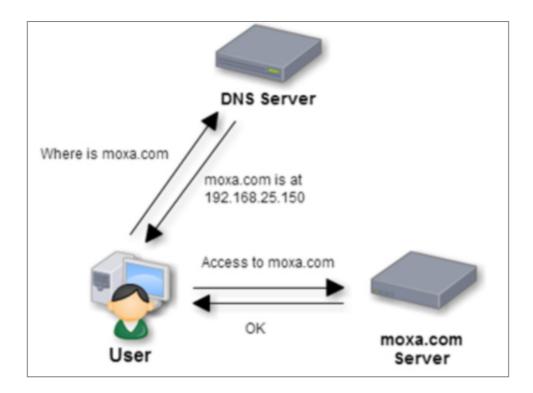
Option 82 - Port List


UI Setting	Description
Port	Shows the port number the entry is for.
Option 82	Shows whether Option 82 is enabled for the port.

Option 82 - Edit Port Settings

Menu Path: Network Service > DHCP Relay Agent - Option 82

Clicking the **Edit** () icon for an port on the **Network Service** > **DHCP Relay Agent** - **Option 82** page will open this dialog box. This dialog lets you to enable or disable Option 82 for the port.


Click **APPLY** to save your changes.

UI Setting	Description	Valid Range	Default Value
Option 82	Enable or disable Option 82 for the port.	Enabled / Disabled	Disabled
Copy configurations to ports	Select the ports you want to copy this configuration to.	Drop-down list of ports	N/A

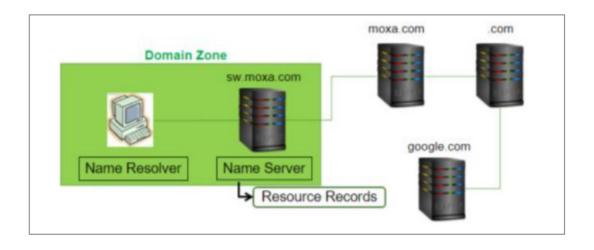
About DNS Server

DNS (Domain Name System) is a hierarchical decentralized naming system for computers, services, or other resources connected to the Internet or a private network.It translates domain names, which are human-readable identifiers for resources, into IP addresses, which are numerical identifiers used to locate and communicate with these resources. For example, http://www.moxa.com is easier to remember than http://92.115.213.11.

While the DNS lookup translates domain names to IP addresses, **DNS Reverse Lookup** performs the opposite. It is a feature that allows the switch to identify the hostname (device name) associated with a known IP address on the network. Imagine you have an IP address on your network, like 192.168.1.100, but you don't know the corresponding device name (hostname). This is where DNS Reverse Lookup comes in. By querying a DNS server configured for reverse lookups, you can retrieve the hostname associated with that IP address. For instance, a reverse lookup for 192.168.1.100 might reveal the hostname "printer-server". This helps with network manageability by making it easier to recognize devices by their names instead of just IP addresses.

Components of DNS

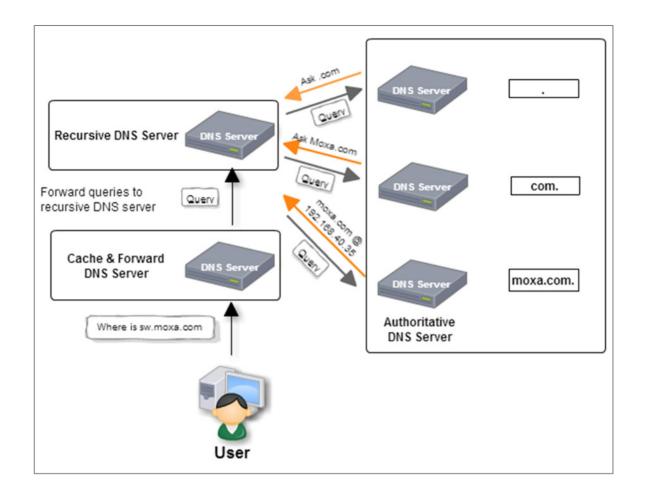
DNS has three major components:


- 1. **Domain Name Space and Resource Records:** A resource record is basically a single mapping between a resource and a name. These can map a domain name to an IP address; define the name servers for the domain, etc.
- 2. **Name Servers:** A name server is a device designated to translate domain names into IP addresses. These servers do most of the work in the DNS system. Since the total number of domain translations is too much for any one server, each

- server may redirect request to other name servers or delegate responsibility for a subset of sub-domains they are responsible for.
- 3. **Resolvers:** Programs that extract information from name servers in response to client requests

For a Moxa "DNS Server" device feature, we will focus on the name server, the following section will further describe the name server and how it works.

Name Servers in Depth


Name servers are the repositories of information that make up the domain database. The database is divided up into sections called **zones**, which are distributed among the name servers. While name servers can have several optional functions and sources of data, the essential task of a name server is to answer queries using data in its zones. As earlier mentioned, the database in name server is divided up into sections called zones. Each zone will be described by many different types of resource records (RRs). The DNS specifies a set of various types of resource records, which are the basic information elements of the domain name system.

A domain name identifies a node. Each node has a set of resource information, which may be empty. The set of resource information associated with a particular name is composed of separate RRs. The order of RRs in a set is not significant, and need not be preserved by name servers, resolvers, or other parts of the DNS. The basic RR formats are defined in RFC 1034.

There are three types of name servers:

- Authoritative Name Server: Authoritative name servers are assigned to be responsible for their supported domains, returns answers only to queries about domain names that have been specifically configured by the administrator. An authoritative name server can either be a master server or a slave server. A master server is a server that stores the original (master) copies of all zone records. A slave server uses an automatic updating mechanism of the DNS protocol in communication with its master to maintain an identical copy of the master records. The zone records can be distributed to all authoritative name servers in the same zone by many ways, the preferred method is the zone transfer of the DNS protocol.
- Caching & Forwarding Name Server: Caching & forwarding name server
 forwards queries to other authoritative or recursive name server when user
 queries a domain which is out of the authority of this name server. It caches the
 response from other DNS server to improve the efficiency of the DNS by reducing
 DNS traffic across the Internet, and by reducing load on authoritative nameservers, particularly root name-servers.
- Recursive Name Server: If the DNS queries cannot reply from either the
 authoritative or caching DNS information in name servers, queries might be
 forward to recursive DNS server. Recursive DNS server queries the root DNS
 server from the TLD of the domain you are trying to reach. The root DNS servers
 then send the information about the authoritative DNS server back to recursive
 server. The operation will repeat many times if needed, until the queried domain
 name is found.

How the Root DNS Server Knows the Location of the ".com" DNS Server

In the Domain Name System (DNS), each domain is managed by its parent domain. For instance, the ".com" domain is delegated by the root DNS server, represented as ".". When ".com" is delegated, the root DNS server adds ".com" as an authoritative server in its database. This ensures that when a query for a ".com" domain is received, the root DNS server can direct it to the appropriate ".com" authoritative DNS server.

Delegation Process

- **Parent to Child Delegation:** The root DNS server must have up-to-date records of which DNS servers are authoritative for each sub-domain. Whenever new DNS servers are added to a child domain like ".com," they must be registered with the parent domain (in this case, the root DNS server).
- Maintaining Delegation: Keeping this delegation accurate and up-to-date manually can be challenging. It requires that any changes in the child domain's authoritative servers are promptly reflected in the parent domain's records.

A stub zone can be a useful tool in some scenarios. It helps automate the update process for the authoritative zone data, ensuring that the delegation information between parent and child domains remains current without requiring constant manual updates.

DNS Server for Layer 2 Switch in Railway Field

Generally, the DNS is the hierarchical and decentralized naming system used to identify computers reachable through the Internet or other Internet Protocol (IP) networks. The resource records contained in the DNS server in corresponding zone can provide necessary information for DNS queries.

In railway field, the DNS is a nonhierarchical and centralized naming system, and the L2 switch DNS server acts as a local authoritative DNS server. It contains a statically configured database of IP addresses and their associated hostnames, and it translates the FQDN to an IP address for DNS clients. The IP address could be either a multicast IP (may represents a service) or a unicast IP (device IP address). For example, it can translate ""ext.door.consist" to "225.1.32.170", and "ext.door.train1" to "10.1.34.170".

Obviously, it is much simpler to remember a word like "door1" instead of a series of numbers. With DNS server, customers will be much easier to manage IP address allocation during the process of the communication system construction.

Example: Configuring DNS Server for a Consist Door

In this procedure, we will create a Zone and a corresponding domain name, and then configure mapping between hostnames and IP addresses.

Zones allow you to create private analogues to top level domains. They allow you to reuse the same hostname without creating conflicts, for example:

- Zone 1 is named moxa1
- Zone 2 is named moxa2

Let's further suppose that you have one door on each consist in a train setup:

- consist1.door in Zone 1 moxa1 with an IP address of 192.168.1.10
- consist1.door in Zone 2 moxa2 with an IP address of 192.168.2.10

The resulting mapping will be

- consist1.door.moxa1 resolves to 192.168.1.10
- consist1.door.moxa1 resolves to 192.168.2.10

To configure the device as a DNS server, do the following:

- 1. Sign in to the device using administrator credentials.
- 2. Go to **Network Service** > **DNS Server** and then click **Global**.
- 3. Under **DNS Server**, choose **Enabled** from the dropdown menu, and then click **Apply**.
- 4. Create a Zone by clicking the **Settings** settings tab, and then under Zone Table, click **!**[Add].

The Create a Zone screen appears.

5. Under **Index**, specify a Zone from the list. Type a **Domain Name** for the domain you choose, and then click **Create**.

✓ Note

Each Zone must have a unique domain name.

This Zone will mapped to the domain name, and **DNS Table for --** will be updated with the Zone index you selected, such as **DNS Table for ZONE-1**. If multiple zones have been created, you can choose the correct zone by choosing from the drop-down menu.

6. To create a DNS host entry, under DNS Table for ZONE, click + [Add].

The **Create Resource Record for ZONE** screen appears.

7. Specify the **Hostname** and corresponding **IP Address**, and then click **Create**.

If we specify a **Hostname** of consist1.door and an IP of **192.168.1.10**

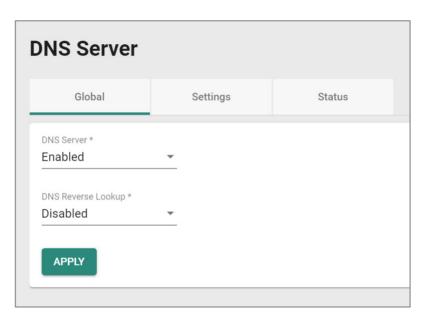
The record appears in the DNS Table.

DNS Server

Menu Path: Network Service > DNS Server

This page lets you configure the DNS server settings.

This page includes these tabs:


- Global
- Settings
- Status

DNS Server - Global

Menu Path: Network Service > DNS Server - Global

This page lets you configure the DNS server related settings. Click **APPLY** to save your changes.

DNS Server Settings

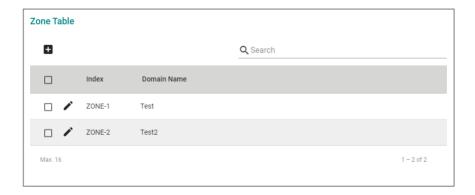
UI Setting	Description	Valid Range	Default Value
DNS Server	Enable or disable the DNS server for your device.	Enabled / Disabled	Disabled
DNS Reverse Lookup	Enable or disable DNS reverse lookup for your device. DNS reverse lookup allows the switch to identify the hostname (device name) associated with a known IP address on the network.	Enabled / Disabled	Disabled

DNS Server - Settings

Menu Path: Network Service > DNS Server - Settings

This page lets you configure the DNS server zone settings.

O Limitations


Up to 16 DNS zones can be created.

O Limitations

Up to 256 resource records can be created for each zone.

Zone Table

Zones provide a structured way to manage and organize DNS records for a domain. They allow administrators to group related records together and apply consistent configurations across the domain.

UI Setting	Description
Index	Shows the number of the zone the entry is for.
Domain Name	Shows the domain name of the zone.

Create a Zone

Menu Path: Network Service > DNS Server - Settings

Clicking the **Add (** icon on the **Network Service** > **DNS Server** - **Settings** page will open this dialog box. This dialog lets you create a zone for the DHCP server.

Click **CREATE** to save your changes and add the new zone.

UI Setting	Description	Valid Range	Default Value
Index	Select a zone to create.	Drop-down list of zones	N/A
Domain Name	Specify a domain name for the zone.	Up to 63 characters	N/A

DNS Table

Select a zone from the drop-down list to see its DNS table.

UI Setting	Description
Hostname	Shows the hostname of the resource record.

UI Setting	Description
IP Address	Shows the IP address of the resource record.

Create a Resource Record

Menu Path: Network Service > DNS Server - Settings

Clicking the Add () icon in a DNS table on the Network Service > DNS Server - Settings page will open this dialog box. This dialog lets you create resource records for the displayed zone.

Click **CREATE** to save your changes and add the resource record for the displayed zone.

Resource records cannot be created for a zone until the corresponding zone has been created.

UI Setting	Description	Valid Range	Default Value
Hostname	Specify the host name for the resource record.	1 to 63 characters	N/A
IP Address	Specify the IP address for the resource record.	Valid IP address	N/A

DNS Server - Status

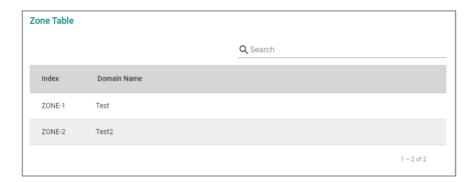
Menu Path: Network Service > DNS Server - Status

This page lets you see the DNS server's overall status.

DNS Server Summary

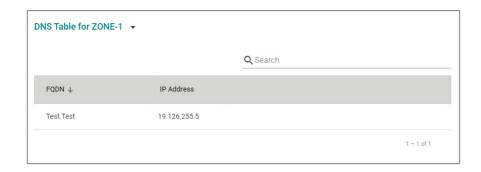
DNS Server Summary

DNS Server


Enabled

DNS Reverse Lookup

Disabled


UI Setting	Description
DNS Server	Shows whether the DNS server is enabled for the device.
DNS Reverse Lookup	Shows whether DNS reverse lookup is enabled for the device

Status - Zone Table

UI Setting	Description
Index	Shows the index of the zone the entry is for.
Domain Name	Shows the domain name of the zone.

Status - DNS Table

UI Setting	Description
FQDN	Shows the full qualified domain name (FQDN) of the resource record, which is in the format "Hostname.Domain Name".
	For example, if the hostname is "door1" and the domain name for the zone is "train1", the FQDN will be "door1.train1".
IP Address	Shows the IP address of the resource record.

Security

Menu Path: Security

This section lets you configure the security settings of your device.

This section includes these pages:

- Device Security
- Network Security
- Authentication

Device Security

Menu Path: Security > Device Security

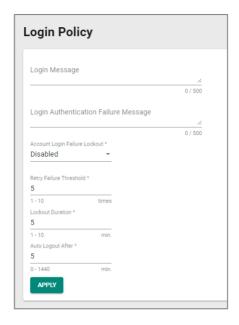
This section lets you configure the device-level security settings of your device.

This section includes these pages:

- Login Policy
- Trusted Access
- SSH & SSL

Login Policy

Login Policy lets you define and enforce login restrictions to improve the security of your device and protect it from unauthorized access from brute force attacks.


Login Policy

Menu Path: Security > Device Security > Login Policy

This page lets you configure the login policies for your device.

Click **APPLY** to save your changes.

Login Policy Settings

UI Setting	Description	Valid Range	Default Value
Login Message	Specify the welcome message to display when users log in to the device.	0 to 500 characters	N/A
Login Authentication	Specify the message to display if the user fails to log in.	0 to 500 characters	N/A
Authentication Failure Message	▲ Warning The Login Authentication Failure Message should not include information about passwords or other sensitive information.	Characters	
Account Login Failure Lockout	Enable or disable the lockout function, which will temporarily prevent users from logging in for the Lockout Duration after the Retry Failure Threshold is exceeded. This can be useful for preventing brute force attacks.	Enabled / Disabled	Disabled
Retry Failure Threshold	Specify the number of login retry attempts allowed before the user is locked out for the Lockout Duration .	1 to 10	5
Lockout Duration	Specify the lockout duration in minutes during which a locked-out user will be unable to log in.	1 to 10	5
Auto Logout After	Specify the amount of time in minutes a user can be idle before they will be automatically logged out from the device.	0 to 1440	5

About Trusted Access

Trusted Access is a feature that allows device management only from trusted IP addresses that you specify.

Trusted access is a crucial mechanism for maintaining the security and integrity of your network infrastructure. It ensures that only authorized devices can connect to sensitive network resources, reducing the risk of unauthorized access and potential security breaches.

Why Trusted Access Matters

- **Security:** By allowlisting IP addresses, administrators ensure that only devices with approved IP addresses can access the network configuration, helping to prevent unauthorized connections.
- Access Control: Trusted access enables administrators to define which IP
 addresses can connect to sensitive resources, ensuring that only trusted devices
 interact with critical areas of the network.

How Trusted Access Works

Enabling trusted access on a device involves configuring IP allowlists. Once an IP address is allowlisted, the device treats it as trusted, allowing access to device management functions. Devices not on the allowlist are denied access, helping to maintain a secure and controlled network environment.

Example: Configuring and Enabling Trusted Access

Enable trusted IP address settings to only allow users to access network device management features from IP addresses you choose. Only IPv4 addresses are supported.

Make sure you add all management devices to the allowlist before enabled Trusted Access, otherwise you may lose access to the management console.

To configure trusted access, do the following:

- 1. Sign in to the device using administrator credentials.
- 2. Go to **Security** > **Device Security** > **Trusted Access**, and then click + [Add].

The Create Entry screen appears.

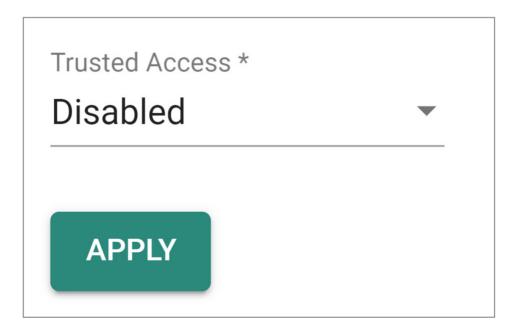
3. Specify the **IP Address** and **Subnet Mask** of the device to add the device IP to the allowlist, and then click **Create**.

The specified **IP Address** and **Netmask** appear on the Trusted Access list.

4. Once you have created entries for all devices, under **Trusted Access**, choose **Enabled**, and then click **Apply**.

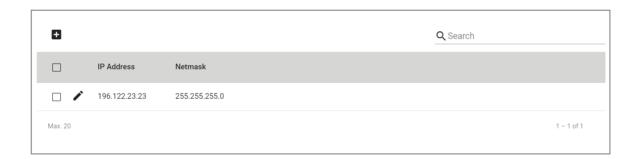
Trusted access will now be enabled, and only devices on the allowlist will be able to access management features.

Trusted Access


Menu Path: Security > Device Security > Trusted Access

This page lets you limit access to the device to trusted IP addresses you specify. You can also limit access to the device to LAN connections only.

O Limitations


You can create up to 20 trusted IP entries.

Trusted Access Settings

Description	Valid Range	Default Value
Enable or disable the Trusted IP List. Enabled: Only IP addresses in the Trusted IP List can access the device. Disabled: Any IP address can access the device.	Enabled / Disabled	Disabled
✓ Note Trusted Access cannot be enabled if there are no entries in the Trusted Access List.		
▲ Warning Depending on the features you enable, you may lose access to your device if the computer you are using to configure the device is not in the Trusted Access List or connected through a		
	Enabled: Only IP addresses in the Trusted IP List can access the device. Disabled: Any IP address can access the device. Note Trusted Access cannot be enabled if there are no entries in the Trusted Access List. Warning Depending on the features you enable, you may lose access to your device if the computer you are using to configure the	Enable or disable the Trusted IP List. Enabled: Only IP addresses in the Trusted IP List can access the device. Disabled: Any IP address can access the device. Note Trusted Access cannot be enabled if there are no entries in the Trusted Access List. Warning Depending on the features you enable, you may lose access to your device if the computer you are using to configure the device is not in the Trusted Access List or connected through a

Trusted Access List

UI Setting	Description
IP Address	Shows the IP address of the Trusted IP entry.
Subnet Mask	Shows the netmask of the Trusted IP entry.

Trusted Access - Create Entry

Menu Path: Security > Device Security > Trusted Access

Clicking the Add () icon on the Security > Device Security > Trusted Access page will open this dialog box. This dialog lets you create a trusted IP entry.

Click **CREATE** to save your changes and add the new entry.

UI Setting	Description	Valid Range	Default Value
IP Address	Specify the IP address of the trusted host(s).	Valid IP Address	N/A
Subnet Mask	Select a netmask for the trusted host(s).	Drop-down list of subnet masks	N/A

SSH & SSL

SSH and SSL are security protocols.

- **Secure Shell (SSH):** SSH is the recommended protocol for secure command-line access. This protocol encrypts the communication channel between a user and a device's management interface. This helps ensure that any data exchanged-like usernames, passwords, or configuration commands-remains hidden from eavesdroppers on the network.
- Secure Sockets Layer (SSL): While functionally similar to SSH, SSL is often used for web-based applications. Though The term "Secure Sockets Layer (SSL)" is still commonly used, it's important to note that it's been deprecated in favor of the more secure Transport Layer Security (TLS) protocol. In the context of

Ethernet switches, some may offer a web interface for management tasks. Moxa switches support TLS versions 1.2 and 1.3. TLS encrypts the communication channel between a user's web browser and a device's web interface. This ensures the security of sensitive data during remote configuration tasks performed through the web interface.

Note

Certificates: Self-signed vs. Trusted

There are two main types of certificates used for TLS connections: self-signed certificates and trusted certificates.

- Self-signed certificates: These certificates are issued by the device itself and are not verified by a third-party Certificate Authority (CA). While they provide basic encryption, they may generate warnings in web browsers due to the lack of trust verification.
- Trusted certificates: These certificates are issued by a trusted CA and are generally considered more secure. Web browsers readily accept connections secured with trusted certificates.

The choice between self-signed and trusted certificates depends on your specific security requirements.

SSH & SSL

Menu Path: Security > Device Security > SSH & SSL

This page lets you manage your SSH key and SSL certificate.

This page includes these tabs:

- SSH
- SSL

SSH

Menu Path: Security > Device Security > SSH & SSL - SSH

This page lets you manage your device's SSH key.

✓ Note

Regenerating your SSH key regularly strengthens SSH security by invalidating potentially compromised keys and adding another layer of defense against unauthorized access. There's no one-size-fits-all answer for how often to regenerate keys; it depends on security risk factors like server importance, access frequency, and potential exposure. Consider regenerating them every few months or every year, especially for critical servers.

Regenerate SSH Key

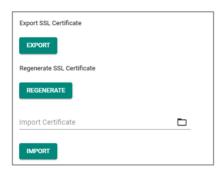
UI Setting	Description	Valid Range	Default Value
Created on	Shows the date and time the current SSH key was created.	N/A	N/A
Regenerate SSH Key	Click REGENERATE to regenerate the SSH key.	N/A	N/A
·	▲ Warning Regenerating the SSH key will restart the device's system services and will make the device temporarily unavailable.		

SSL

Menu Path: Security > Device Security > SSH & SSL - SSL

This page lets you manage your device's SSL certificate. Click **APPLY** to save your changes.

Certificate Information



UI Setting	Description
CA Name	Shows the CA name of the SSL certificate.
Expiration Date	Shows when the current certificate will expire.

SSL Settings

To import a customer certificate, follow the steps below:

- 1. Import root CA generated by customer's CA server to a PC.
- 2. 'Export' the CSR file from the switch and use the customer's CA server to generate a certificate.
- 3. 'Import' the certificate to the switch.

UI Setting	Description	Valid Range	Default Value
Export SSL Certificate Request	Click EXPORT to export the SSL certificate to your local computer.	N/A	N/A
Regenerate SSL Certificate	Click REGENERATE to regenerate the SSL certificate.	N/A	N/A
Import Certificate	Select an SSL certificate from your computer, then click IMPORT to import the certificate to your device.	N/A	N/A

Network Security

Menu Path: Security > Network Security

This section lets you configure the network-level security settings of your device.

This section includes these pages:

- IEEE 802.1X
- MAC Authentication Bypass
- Port Security
- Traffic Storm Control
- Access Control List
- Network Loop Protection
- Binding Database
- DHCP Snooping
- IP Source Guard
- Dynamic ARP Inspection

IEEE 802.1X

IEEE 802.1X is a standard for managing access control, ensuring that devices seeking to access network resources are what they claim to be.

About IEEE 802.1X

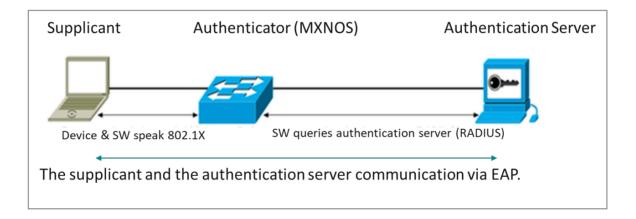
802.1X is a standard for port-based Network Access Control (NAC) that provides an authentication framework for devices trying to connect to a network.

Part of the IEEE 802.1 group of networking protocols, the primary purpose of 802.1X is to enhance the security of wired and wireless networks by requiring users and devices to authenticate themselves before gaining access to network resources.

Topology

An 802.1X topology has three roles:

- Supplicant: The client device (e.g., laptop, smartphone) seeking network access.
- Authenticator: The network device (e.g., switch, wireless access point) that controls access to the network ports.

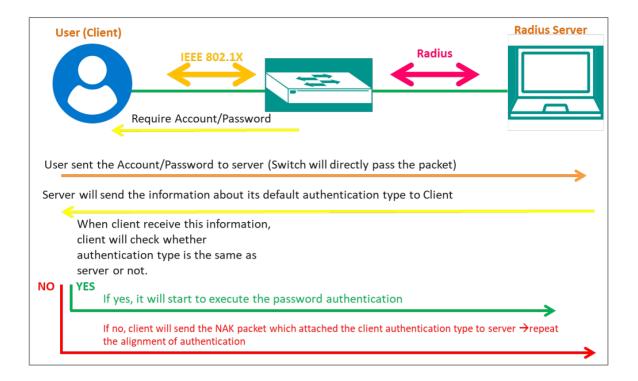

 Authentication Server: A server that performs the actual authentication of the supplicant. It could be a RADIUS (Remote Authentication Dial-In User Service) server or another centralized authentication service.

Note

In an 802.1X environment, Moxa switches primarily function as authenticators. However, they can also be optionally configured to act as authentication servers.

In an 802.1X authentication system, the supplicant (client), authenticator device (Switch or Wi-Fi AP), and authentication server exchange information using the Extensible Authentication Protocol (EAP).

A supplicant and an authenticator exchange EAPOL (Extensible Authentication Protocol over LAN) frames with each other. We can either use an external RADIUS server as the authentication server or implement the authentication server in the Moxa switch by using a Local User Database as the authentication look-up table. When using an external RADIUS server as the authentication server, the authenticator and the authentication server exchange EAP frames.

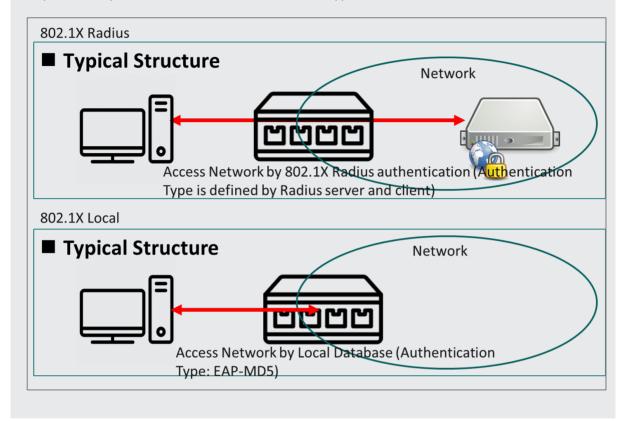


Note

It is possible to use 802.1X authentication without a separate authentication server using local authentication. The Authenticator can be configured to determine client access rights.

Authentication Process

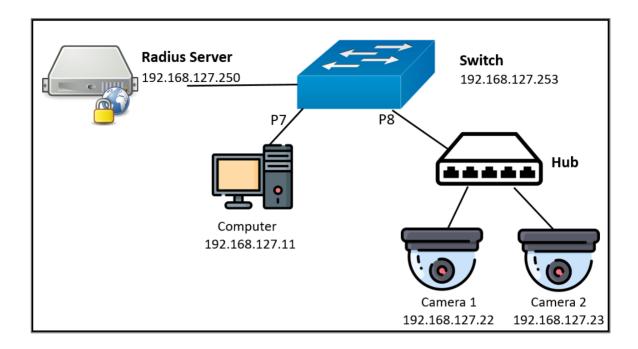
When a device connects to a network port configured for 802.1X, the following process occurs:



- Initialization: The supplicant sends an EAPOL (Extensible Authentication Protocol Over LAN) start message to the authenticator.
- 2. Authentication Request: The authenticator replies with an EAP Request/Identity message, prompting the supplicant to provide its identity.
- 3. Identity Response: The supplicant responds with its identity, typically a username.
- 4. Authentication Exchange: The authenticator relays the identity to the authentication server, which then initiates an authentication exchange with the supplicant using EAP (Extensible Authentication Protocol).
- Authentication Result: Based on the outcome of the authentication process (which
 could involve methods like username/password, digital certificates, or other
 credentials), the authentication server sends an Accept or Reject message to the
 authenticator.
- 6. Access Granted/Denied: If authentication is successful, the authenticator allows the supplicant access to the network. If authentication fails, access is denied.

802.1X provides a robust mechanism for controlling network access, ensuring that only authorized users and devices can connect to the network. It's widely used in enterprise environments to enforce security policies and protect against unauthorized access. The following diagram illustrates the process of a client establishing 802.1X communication with the authentication server through the MXNOS switch.

✓ Note


Authentication can also be initiated by the authenticator. Ordinarily, supplicants initiate the authentication process, with an EAPOL-Start frame sent to the authenticator. When the authenticator initiates the authentication process (either on its own, or on receipt of an EAPOL-Start frame), it sends an EAP Request/Identity frame to ask for the username of the supplicant.

Example: Configuring a Switch as an Authenticator

In this example, we configure a Moxa switch as an authenticator, connecting supplicant devices (2 cameras and a computer) to a RADIUS server.

Our sample topology should look like the following:

The topology uses the following roles:

- Supplicants:
 - Cameras 1 and 2, connected to the switch with a hub on port 8
 - o Computer, connected on Port 7
- Authenticator: Switch
- Server: RADIUS server

Before you begin: This task uses sample values and assumes that a RADIUS server is already configured.

To configure the switch as an authenticator, do the following:

- 1. Sign in to the device using administrator credentials.
- 2. Got to Security > Network Security > IEEE 802.1X→General.
- 3. Click **IEEE 802.1X** and choose **Enabled** from the drop-down menu.
- 4. Click **Authentication Mode**, choose **RADIUS** from the drop-down menu, and then click **Apply** to save your settings.
- To configure the example computer, click / [Edit] corresponding to Port 7.
 Result: The Port Settings screen appears.
- 6. Configure the following:

7.

Option	Value
Enabled	Enabled
Port Control	Auto
Authentication Session Type	Port-Based
Max. Request	2
Quiet Period	60
Reauthentication	Disabled

- 8. Click Apply.
- To configure the example cameras, click [Edit] corresponding to Port 8.
 Result: The Port Settings screen appears.
- 10. Configure the following:

Option	Value
Enabled	Enabled
Port Control	Auto
Authentication Session Type	MAC-based
Max. Request	2
Quiet Period	60
Reauthentication	Disabled

11. Click Apply.

What to do next: You must configure RADIUS server settings before the switch can function as an authenticator.

Example: Configuring RADIUS Server Settings

The switch must be configured with the RADIUS server settings before it can serve as an authenticator.

- 1. Sign in to the device using administrator credentials.
- 2. Go to Security > Network Security > IEEE 802.1X > RADIUS.
- 3. Specify all of the following:

Option	Value
Server IP Address 1	192.168.127.11
Auth Port	1812
Share Key	Type your key here
Timeout	5
Retransmit	5

4. Click **Apply** to save changes.

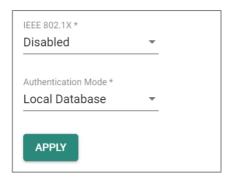
What to do next: Once configured, status information will be available under Security > Network Security > IEEE 802.1X > Status.

IEEE 802.1X

Menu Path: Security > Network Security > IEEE 802.1X

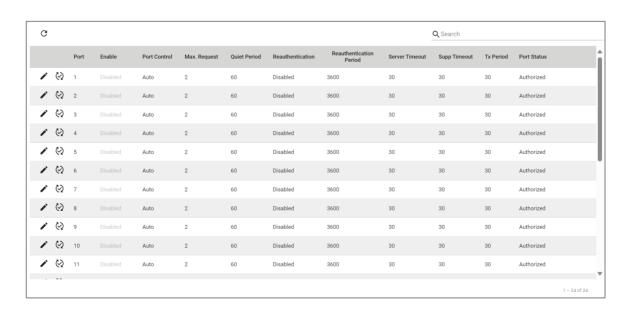
This page lets you manage your device's IEEE 802.1X authentication feature.

This page includes these tabs:


- General
- RADIUS
- Local Database

IEEE 802.1X - General

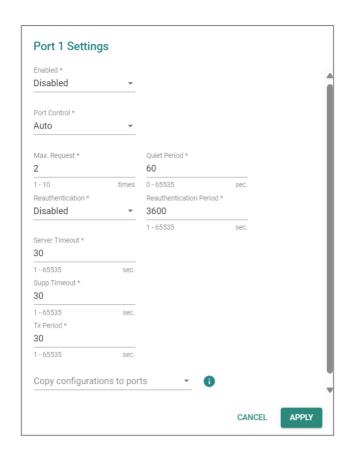
Menu Path: Security > Network Security > IEEE 802.1X - General


This page lets you configure your device's IEEE 802.1X settings.

IEEE 802.1X Settings

UI Setting	Description	Valid Range	Default Value
IEEE 802.1X	Enable or disable IEEE 802.1X authentication. Note Enabling IEEE 802.1X allows VLAN assignment through a RADIUS server, but the VLAN must already exist.	Enabled / Disabled	Disabled
Authentication Mode	 RADIUS: Use a RADIUS server for authentication. Local Database: Use the local database for authentication. 	RADIUS / Local Database	Local Database

IEEE 802.1X List


UI Setting	Description
Port	Shows the port number the entry is for.
Enable	Shows whether IEEE 802.1X is enabled for the port.
Port Control	Shows the port control method used for the port.
Max. Request	Shows the maximum number of re-authentication requests allowed for the port.
Quiet Period	Shows the amount of time in seconds the device will remain in a quiet state following a failed authentication exchange with a client through the port.
Reauthentication	Shows whether IEEE 802.1X reauthentication is enabled for the port.
Reauthentication Period	Shows the amount of time in seconds to wait in between reauthentication attempts for the port.
Server Timeout	Shows the amount of time in seconds the device will try to retransmit packets to an authentication server.
Supp Timeout	Shows the amount of time in seconds the device will try to retransmit packets to a supplicant, such as a client PC.
Tx Period	Shows the amount of time in seconds the device will try to retransmit the data to a client.

IEEE 802.1X - Edit Port Settings

Menu Path: Security > Network Security > IEEE 802.1X - General

Clicking the **Edit** () icon for a port on the **Security** > **Network Security** > **IEEE 802.1X - General** page will open this dialog box. This dialog lets you edit the IEEE 802.1X settings for the port.

Click **APPLY** to save your changes.

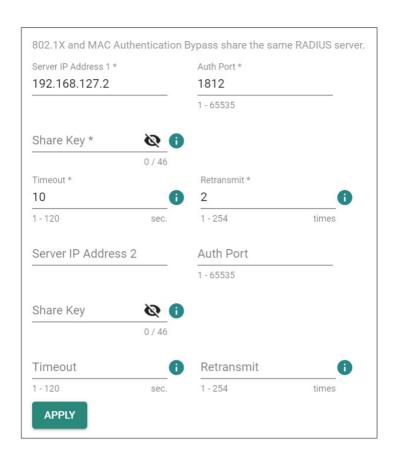
UI Setting	Description	Valid Range	Default Value
Enabled	Enable or disable IEEE 802.1X authentication for the port.	Enabled / Disabled	Disabled
Port Control	 Force Unauthorized: The controlled port will stay in the unauthorized state. Auto: The controlled port will be set to the authorized or unauthorized state based on the outcome of an authentication exchange between the supplicant and the authentication server. Force Authorized: The controlled port will stay in the authorized state. 	Force Unauthorized / Auto / Force Authorized	Auto
Max. Request	Specify how many times to attempt reauthentication for the port.	1 to 10	2
Quiet Period	Specify the amount of time in seconds the device will remain in a quiet state following a failed authentication exchange with a client through the port.	0 to 65535	60

UI Setting	Description	Valid Range	Default Value
Reauthentication	Enable/disable IEEE 802.1X reauthentication for the port.	Enabled / Disabled	Disabled
Reauthentication Period	Specify the amount of time in seconds to wait in between reauthentication attempts for the port.	1 to 65535	3600
Server Timeout	Specify the amount of time in seconds the device will try to retransmit packets to an authentication server.	1 to 65535	30
Supp Timeout	Specify the amount of time in seconds the device will try to retransmit packets to a supplicant, such as a client PC.	1 to 65535	30
Tx Period	Specify the amount of time in seconds the device will try to retransmit the data to a client.	1 to 65535	30
Copy configurations to ports	Select the ports you want to copy this configuration to.	Drop-down list of ports	N/A

IEEE 802.1X - RADIUS

Menu Path: Security > Network Security > IEEE 802.1X - RADIUS

This page lets you specify a RADIUS server to use for IEEE 802.1X authentication. Click **APPLY** to save your changes.


✓ Note

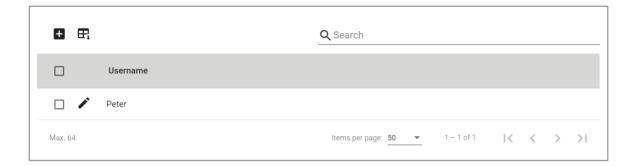
The system will use the primary RADIUS server by default. If the primary RADIUS server is unavailable, it will use the secondary RADIUS server.

IEEE 802.1X RADIUS Settings

Note

802.1X and MAC authentication bypass share the same RADIUS server settings; changes made here will also affect the other feature.

UI Setting	Description	Valid Range	Default Value
Server IP Address 1/2	Specify the IP address of the 1st/2nd server.	Valid IP address	N/A
Auth Port	Specify the authentication port number for the RADIUS server.	1 to 65535	N/A
Share Key	Specify the share key for the server.	0 to 46 characters	N/A
Timeout	Specify how long to wait in seconds before a device is logged out.	1 to 120	N/A
Retransmit	Specify how many times to retry data transmission.	1 to 254	N/A

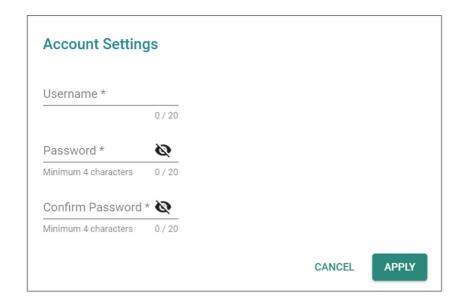

IEEE 802.1X - Local Database

Menu Path: Security > Network Security > IEEE 802.1X - Local Database

This page lets you create local database user accounts to use with IEEE 802.1X authentication.

O Limitations

You can create up to 64 IEEE 802.1X local database accounts.


UI Setting	Description
Username	Shows the username of the account.

IEEE 802.1X - Local Database - Account Settings

Menu Path: Security > Network Security > IEEE 802.1X - Local Database

Clicking the Add (con on the Security > Network Security > IEEE 802.1X - Local Database page will open this dialog box. This dialog lets you create a new user account for IEEE 802.1X authentication.

Click **CREATE** to save your changes and add the new account.

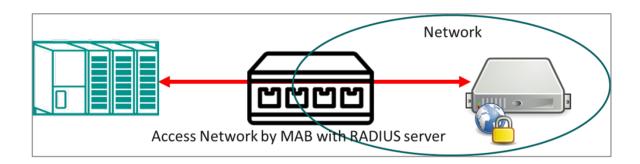
UI Setting	Description	Valid Range	Default Value
Username	Specify the username for this account.	1 to 20 characters	N/A
Password	Specify the password for this user account.	4 to 20 characters	N/A
Confirm Password	Re-enter the password for this user account.	4 to 20 characters	N/A

About MAC Authentication Bypass

MAC Authentication Bypass (MAB) allows network access based on a device's Media Access Control (MAC) address, bypassing traditional username/password authentication methods like 802.1X. This feature is particularly useful for granting access to devices that cannot support more advanced authentication protocols.

How MAC Authentication Bypass Works

MAB operates like a VIP list for your network. When a device connects, the network checks its MAC address against an approved list. If the MAC address is recognized, the device is granted access without needing additional authentication. If the MAC address isn't on the list, access is denied.


When to Use MAB

• **Legacy Devices:** Some older devices may not support advanced authentication methods like 802.1X. MAB provides a way to allow these devices to connect using their MAC address.

While MAB is convenient, it's important to note that MAC addresses can be spoofed, making this method less secure compared to more robust authentication techniques. Therefore, MAB should be used in scenarios where ease of access is prioritized over stringent security measures.

Configuring MAC Authentication Bypass

To add a device to MAC Authentication Bypass, first add the MAC address of the bypass device to the **Local Database**, then enable **MAC Authentication Bypass** on the Port the bypass device is attached to.

This procedure assumes that devices on your network are authenticated using either a RADIUS server or a local database.

✓ Note

MAC addresses are easily spoofed, and are not generally accepted as adequete means of authentication without other forms of security. Make sure that you have fully evaluated the security risks associated with this feature before use in a sensitive environment.

To configure MAC Authentication Bypass, do the following:

- 1. Sign in to the device using administrator credentials.
- Go to Security > Network Security > MAC Authentication Bypass, click on the Local Database tab, and then click +[Add].

The Create Entry screen appears.

3. Specify the **MAC Address** of the device to be added to the local database, and then click **Create**.

The MAC address appears in the table.

- 4. Click the **General** tab at the top of the screen, and verify that **MAC**Authentication Bypass is Enabled.
- 5. Locate the port the bypass device is attached to, and then click the corresponding

The Edit Port Settings screen appears.

6. Set MAC Authentication Bypass to Enabled, and then click Apply.

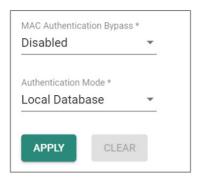
The bypass device will now be authenticated for network access.

MAC Authentication Bypass

Menu Path: Security > Network Security > MAC Authentication Bypass

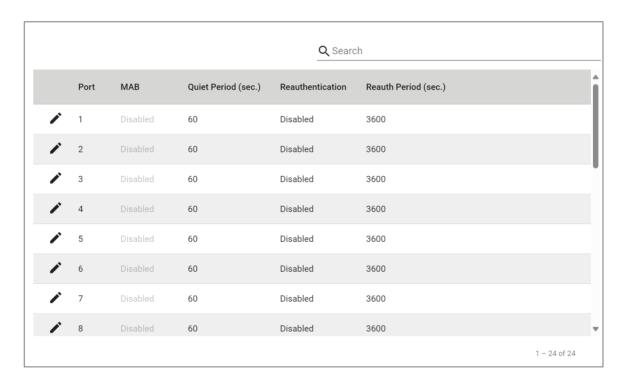
This page lets you configure the MAC Authentication Bypass settings.

This page includes these tabs:


- General
- RADIUS
- Local Database

MAC Authentication Bypass - General

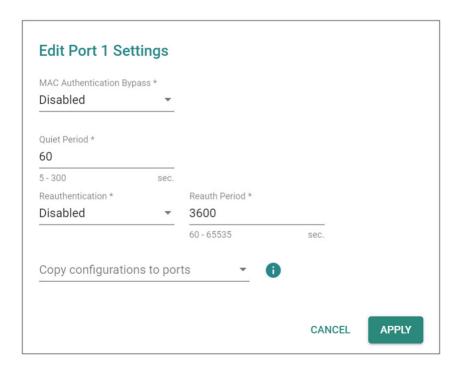
Menu Path: Security > Network Security > MAC Authentication Bypass - General


This page lets you configure general settings for MAC authentication bypass.

MAC Authentication Bypass Settings

UI Setting	Description	Valid Range	Default Value
MAC Authentication Bypass	Enable or disable MAC authentication bypass.	Enabled / Disabled	Disabled
Authentication Mode	Specify the authentication mode for MAC authentication bypass.	RADIUS / Local Database	Local Database

MAC Authentication Bypass List


UI Setting	Description
Port	Shows the port number the entry is for.
МАВ	Shows whether MAC Authentication Bypass is enabled for the port.
Quiet Period	Show the amount of time in seconds the device will remain in a quiet state following a failed authentication exchange with a client through the port.
Reauthentication	Shows whether IEEE 802.1X reauthentication is enabled for the port.
Reauthentication Period	Shows the amount of time in seconds to wait in between reauthentication attempts for the port.

MAC Authentication Bypass - Edit Port Settings

Menu Path: Security > Network Security > MAC Authentication Bypass - General

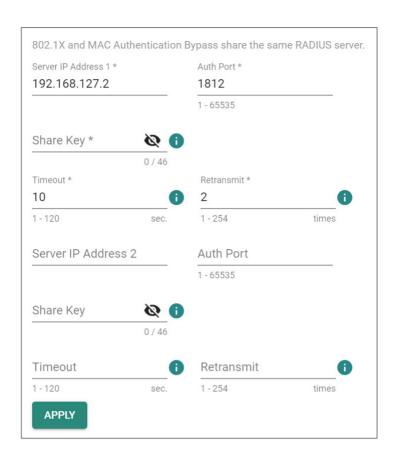
Clicking the **Edit** () icon for a port on the **Security** > **Network Security** > **MAC Authentication Bypass** - **General** page will open this dialog box. This dialog lets you edit the MAC Authentication Bypass settings for the port.

Click **APPLY** to save your changes.

UI Setting	Description	Valid Range	Default Value
MAC Authentication Bypass	Enable or disable MAC Authentication Bypass for the port.	Enabled / Disabled	Disabled
Quiet Period	Specify the amount of time in seconds the device will remain in a quiet state following a failed authentication exchange with a client through the port.	5 to 300	60 sec.
Reauthentication	Enable or disable IEEE 802.1X reauthentication for the port.	Enabled / Disabled	Disabled
Reauthentication Period	Specify the amount of time in seconds to wait in between reauthentication attempts for the port.	60 to 65535	3600 sec.
Copy configurations to ports	Select the ports you want to copy this configuration to.	Drop-down list of ports	N/A

MAC Authentication Bypass - RADIUS

Menu Path: Security > Network Security > MAC Authentication Bypass - RADIUS

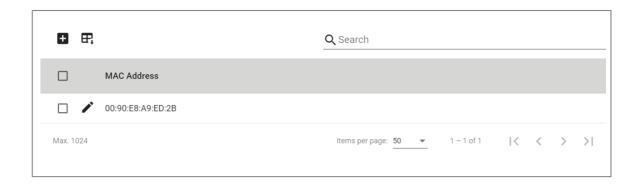

This page lets you configure the RADIUS settings for MAC authentication bypass.

✓ Note

Enabling MAC Authentication Bypass allows VLAN assignment through a RADIUS server, but the VLAN must already exist.

✓ Note

802.1X and MAC authentication bypass share the same RADIUS server settings; changes made here will also affect the other feature.



UI Setting	Description	Valid Range	Default Value
Server IP Address 1/2	Specify the IP address of the 1st/2nd server.	Valid IP address	N/A
Auth Port	Specify the authentication port number for the RADIUS server.	1 to 65535	N/A
Share Key	Specify the share key for the server.	0 to 46 characters	N/A
Timeout	Specify how long to wait in seconds before a device is logged out.	1 to 120	N/A
Retransmit	Specify how many times to retry data transmission.	1 to 254	N/A

MAC Authentication Bypass - Local Database

Menu Path: Security > Network Security > MAC Authentication Bypass - Local Database

This page lets you manage local database entries for MAC authentication bypass.

UI Setting	Description
MAC Address	Shows the MAC address used for MAC authentication bypass.

MAC Authentication Bypass - Local Database - Create Entry

Menu Path: Security > Network Security > MAC Authentication Bypass - Local Database

Clicking the Add () icon on the Security > Network Security > MAC

Authentication Bypass - Local Database page will open this dialog box. This dialog lets you create a new MAC authentication bypass entry.

Click **CREATE** to save your changes and add the new entry.

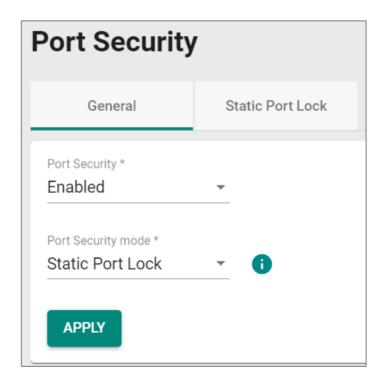
UI Setting	Description	Valid Range	Default Value
MAC Address	Specify the MAC address to use for MAC authentication bypass.	Valid unicast MAC address	N/A

Port Security

Menu Path: Security > Network Security > Port Security

This page lets you enable and configure a port security mode for your device.

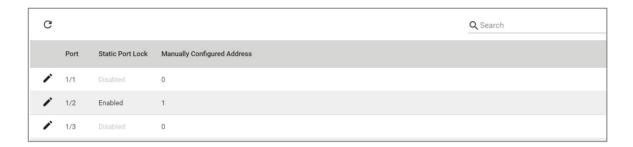
This page includes these tabs:


- General
- Static Port Lock (if **Static Port Lock** is selected for **Port Security Mode**)
- MAC Sticky (if **MAC Sticky** is selected for **Port Security Mode**)

Port Security - General

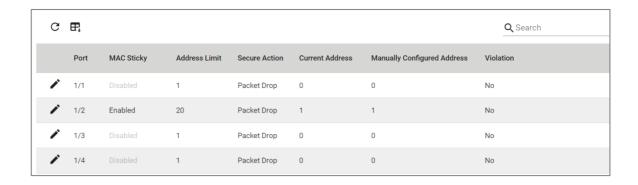
Menu Path: Security > Network Security > Port Security - General

This page lets you enable port security and select a port security mode.


Port Security Settings

UI Setting	Description	Valid Range	Default Value
Port Security	Enable or disable port security.	Enabled / Disabled	Enabled
Port Security Mode	A Warning When changing the port security mode, all configured port security entries in the Static Port Lock/MAC Sticky tab will be deleted.	Static Port Lock / MAC Sticky	Static Port Lock

Port Security List - Static Port Lock

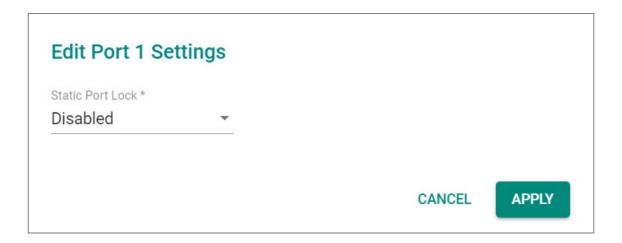

If **Port Security Mode** is set to **Static Port Lock**, the following table will appear.

UI Setting	Description
Port	Shows the port number the entry is for.
Static Port Lock	Shows whether static port lock is enabled for the port.
Manually Configured Address	Shows the number of MAC addresses manually configured for the port.

Port Security List - MAC Sticky

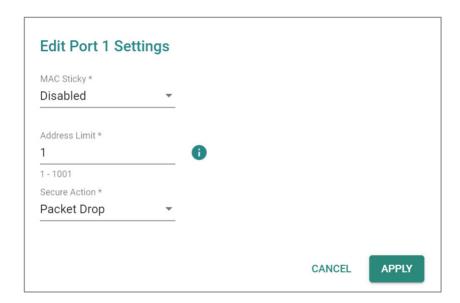
If **Port Security Mode** is set to **MAC Sticky**, the following table will appear.

UI Setting	Description
Port	Shows the port number the entry is for.
MAC Sticky	Shows whether MAC Sticky mode is enabled for the port.
Address Limit	Shows the maximum number of MAC addresses to learn for the port.
Secure Action	Shows the action the device will take when the number of MAC addresses exceeds the address limit.
Current Address	Shows the current number of MAC addresses learned for the port.
Manually Configured Address	Shows the number of manually configured MAC addresses for the port.
Violation	Shows whether there have been any violations for the port.


Port Security - Edit Port Settings

Menu Path: Security > Network Security > Port Security - General

Clicking the **Edit** () icon for a port on the **Security > Network Security > Port Security - General** page will open this dialog box. This dialog lets you configure port security settings for the port.


Click **APPLY** to save your changes.

If **Port Security Mode** is set to **Static Port Lock**, the following dialog will appear when editing port security settings.

If **Port Security Mode** is set to **MAC Sticky**, the following dialog will appear when editing port security settings.

UI Setting	Description	Valid Range	Default Value
Address Limit	Specify the maximum number of the learned and configured MAC addresses allowed for the port.	1 to 1001	1
	Note Changing the address limit will clear all currently configured MAC addresses for the port.		
Secure Action	 Specify the action to take when a violation occurs. Port Shutdown: The port will be shut down. Packet Drop: Packets for the additional MAC addresses will be dropped. 	Port Shutdown / Packet Drop	Packet Drop

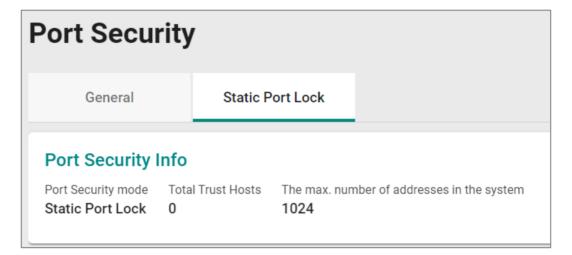
Static Port Lock

Static Port Lock function provides port-based security by letting you specify which device MAC addresses are allowed to access the network through a specific port. Packets sent from unknown devices or from configured devices with mismatching ports will be dropped. In other words, only packets from devices with allowed MAC addresses can be sent to the specific port, helping secure network data transmissions.

Static Port Lock

Menu Path: Security > Network Security > Port Security - Static Port Lock

This page lets you configure Static Port Lock.


✓ Note

This tab will only appear when Port Security Mode is set to Static Port Lock.

C Limitations

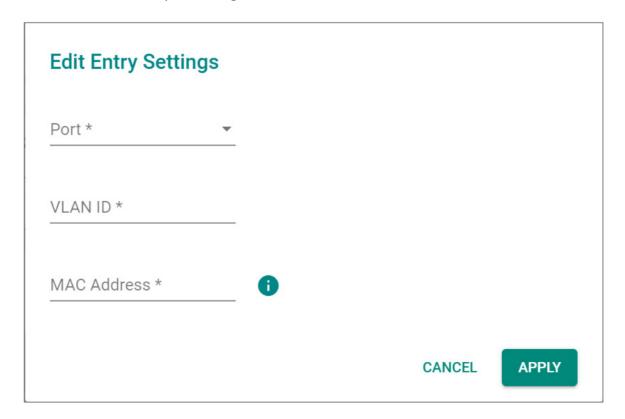
You can create up to 1024 static port lock entries.

Static Port Lock - Port Security Info

UI Setting	Description
Port Security mode	Shows the port security mode being used.
Total Trust Hosts	Shows the number of trusted hosts allowed to access the network.
The max. number of address in the system	Show the maximum number of MAC address allowed to be learned or specified for port security.

Static Port Lock - Port List

UI Setting	Description
Port	Shows the port number the entry is for.


UI Setting	Description			
VLAN ID	Show the VLAN applied to the port.			
MAC Address	Show the MAC address of the device which is used as a reliable source for network access.			
Туре	Shows how the entry was created.			
Effective	Shows whether the entry is effective.			
	✓ Note If an entry is not effective, it may have an invalid interface set for it.			

Static Port Lock - Add Entry Settings

Menu Path: Security > Network Security > Port Security - Static Port Lock

Clicking the Add () icon on the Security > Network Security > Port Security - Static Port Lock page will open this dialog box. This dialog lets you configure static port lock settings for a port.

Click **CREATE** to save your changes and add the new account.

UI Setting	Description	Valid Range	Default Value
Port	Select the port to add an entry for.	Drop-down list of ports	N/A
VLAN ID Specify the VLAN ID to use with the port.		Valid VLAN ID	N/A
MAC Address			N/A

MAC Sticky

MAC Sticky is a function that allows you to configure the maximum number of MAC addresses that a port can "learn." You can also configure what action should be taken when a new MAC address tries to access a port after the maximum number of MAC addresses have already been learned.

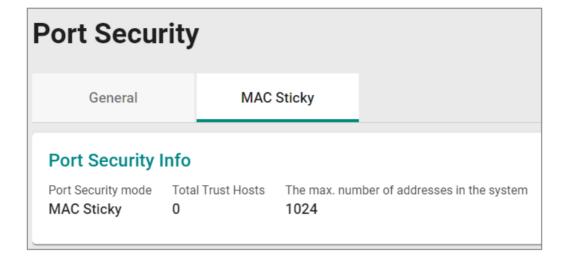
How MAC Sticky Works

In MAC Sticky mode, you can set a proper limit number and then configure trusted devices manually, or let the device configure trusted devices automatically. Aside from dropping packets as a response to any violations, you can also configure ports to enter "port shutdown" and achieve a strict security guarantee. When a violation is registered on a port, the port will shut down and an administrator will receive a notification to perform a check.

MAC Sticky

Menu Path: Security > Network Security > Port Security - MAC Sticky

This page lets you configure MAC Sticky.


✓ Note

This tab will only appear when Port Security Mode is set to MAC Sticky.

O Limitations

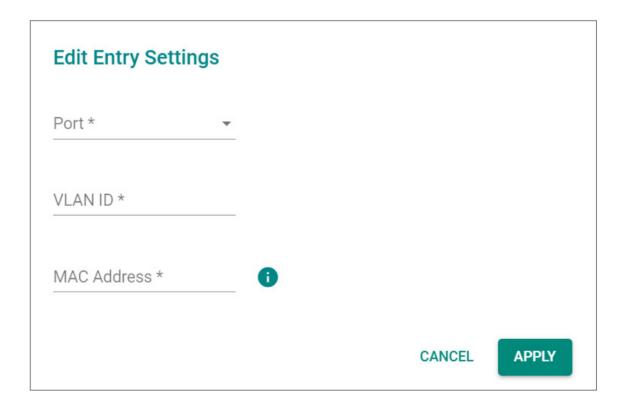
You can create up to 1024 MAC Sticky entries.

MAC Sticky - Port Security Info

UI Setting	Description
Port Security mode	Shows the port security mode being used.
Total Trust Hosts	Shows the number of trusted hosts allowed to access the network.
The max. number of address in the system	Show the maximum number of MAC address allowed to be learned or specified for port security.

MAC Sticky - Port List

UI Setting	Description
Port	Shows the port number the entry is for.


UI Setting	Description			
VLAN ID	Show the VLAN applied to the port.			
MAC Address	Show the MAC address of the device which is used as a reliable source for network access.			
Туре	Shows how the entry was created.			
Effective	Shows whether the entry is effective.			
	✓ Note If an entry is not effective, it may have an invalid interface set for it.			

MAC Sticky - Create Entry Settings

Menu Path: Security > Network Security > Port Security - MAC Sticky

Clicking the Add () icon on the Security > Network Security > Port Security - MAC Sticky page will open this dialog box. This dialog lets you configure MAC Sticky settings for a port.

Click **CREATE** to save your changes and add the new account.

UI Setting	Description	Valid Range	Default Value
Port	Select the port to add an entry for.	Drop-down list of ports	N/A
VLAN ID	VLAN ID Specify the VLAN ID to use with the port.		N/A
MAC Address	Specify the MAC address of the device that will be used as the reliable source for network access.	Valid MAC address	N/A

Traffic Storm Control

A traffic storm can happen when packets flood the network and cause excessive traffic, slowing down network performance. To counter this, Traffic Storm Control provides an efficient design to prevent the network from flooding caused by a broadcast, multicast, or unicast traffic storm on a physical network layer. Traffic Storm Control can handle packets from both ingress and egress data.

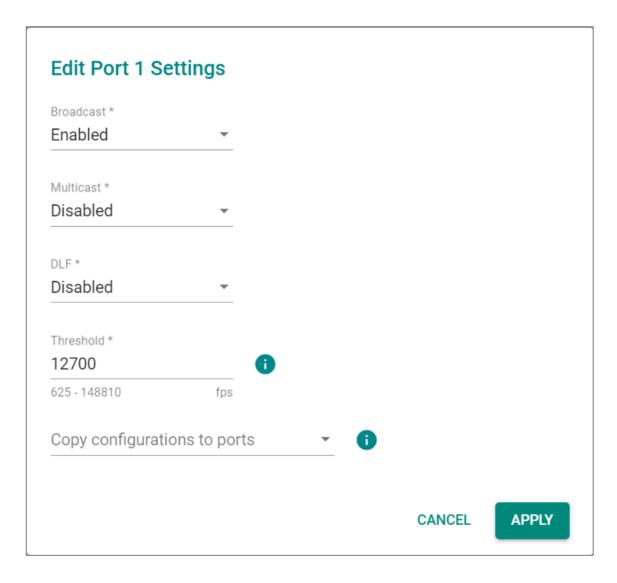
Traffic Storm Control

Menu Path: Security > Network Security > Traffic Storm Control

This page lets you configure traffic storm control for each port.

Traffic Storm Control

	Port	Broadcast	Multicast	DLF	Threshold (fps)
•	1	Enabled	Disabled	Disabled	12700
•	2	Enabled	Disabled	Disabled	12700
•	3	Enabled	Disabled	Disabled	12700
ľ	4	Enabled	Disabled	Disabled	12700
•	5	Enabled	Disabled	Disabled	12700
•	6	Enabled	Disabled	Disabled	12700
1	7	Enabled	Disabled	Disabled	12700


UI Setting	Description		
Port	Shows the port number the entry is for.		
Broadcast	Shows whether traffic storm control is enabled for broadcast packets for the port.		
Multicast	Shows whether traffic storm control is enabled for multicast packets for the port.		
DLF	Shows whether traffic storm control is enabled for DLF for the port.		
Threshold	Shows the traffic storm threshold value in fps for the port.		

Traffic Storm Control - Edit Port Settings

Menu Path: Security > Network Security > Traffic Storm Control

Clicking the **Edit** () icon for a port on the **Security** > **Network Security** > **Traffic Storm Control** page will open this dialog box. This dialog lets you configure traffic storm control for the port.

Click **APPLY** to save your changes.

UI Setting	Description	Valid Range	Default Value
Broadcast	Enable or disable traffic storm control for broadcast packets for the port.	Enabled / Disabled	Disabled

UI Setting	Description	Valid Range	Default Value
Multicast	Enable or disable traffic storm control for multicast packets for the port.	Enabled / Disabled	Disabled
DLF	Enable or disable traffic storm control for DLF packets for the port.	Enabled / Disabled	Disabled
Threshold	Specify the threshold in frames per second to reach before detecting a traffic storm for the port.	625 to 14881000	12700 fps
Copy configurations to ports	Select the ports you want to copy this configuration to.	Drop-down list of ports	N/A

Access Control List

Access Control Lists (ACLs) helps you control network traffic based on specific criteria.

Here's an overview of some different kinds of ACLs:

- **Security:** ACLs provide a means to control access to network resources based on specific criteria such as source or destination IP addresses, MAC addresses, protocols, or port numbers. By implementing ACLs, you can enforce security policies and restrict unauthorized access to sensitive resources.
- **Traffic Management:** ACLs allow you to manage network traffic by selectively permitting or denying certain types of traffic. This helps optimize network performance by prioritizing critical traffic and controlling bandwidth usage.
- Compliance: In many industries, organizations are required to comply with security regulations and standards that mandate access control measures. By enabling ACLs, you can implement and demonstrate compliance with these requirements and mitigate security risks.
- Protection Against Attacks: ACLs can help protect networks against various types of attacks by blocking malicious traffic before it reaches its intended destination.
- **Preventing Unauthorized Access:** By implementing ACLs, you can prevent unauthorized users or devices from accessing network resources, reducing the risk of data breaches and unauthorized activities.

Overall, enabling ACLs enhances network security, improves traffic management, helps ensure compliance with regulations, and protects against various threats and attacks.

How Access Control Lists Works

In an Ethernet switch, Access Control Lists (ACLs) work by examining incoming or outgoing packets and making decisions based on predefined rules. Each access list is a filter. When a packet enters into or exits from a switch, ACL will compare the packet to the rules in the access lists, starting from the first rule. If a packet is rejected or accepted by the first rule, the switch will drop or pass this packet directly without checking the rest of the lower-priority rules.

Here's how it typically works:

- Packet Inspection: When a packet arrives at a switch port, the switch inspects
 the packet headers, including source and destination MAC addresses, IP
 addresses, and port numbers.
- 2. **ACL Lookup:** The switch compares the packet's header information against the ACL rules configured on the switch. These rules define which types of traffic are allowed or denied based on specific criteria such as MAC addresses, IP addresses, protocols, or port numbers.
- 3. **Decision Making:** Based on the ACL rules, the switch decides whether to permit or deny the packet. If the packet matches an ACL rule that permits the traffic, it is forwarded according to the switch's normal forwarding behavior. If the packet matches an ACL rule that denies the traffic, it is either dropped or forwarded to a specified destination, depending on the ACL configuration.
- 4. **Logging and Statistics:** Some switches may also provide logging and statistical features for ACLs, allowing administrators to monitor and analyze network traffic and ACL rule matches.

Overall, ACLs in Ethernet switches provide a mechanism for controlling access to network resources based on specific criteria, helping to enforce security policies and manage network traffic.

Managing Inter-line Communication

Scenario: You are the network administrator for a manufacturing plant that utilizes Moxa Layer 2 switches to manage its network infrastructure. The plant has multiple production

lines, each with its own set of devices, and you want to restrict inter-line communication based on MAC addresses.

Requirements:

- 1. Devices on Production Line A should only communicate with each other and with specific servers.
- 2. Devices on Production Line B should communicate with each other, with devices on Production Line A, and with specific servers, but should not communicate with devices from other production lines.
- 3. The maintenance team should have unrestricted communication with all devices on all production lines.

Implementation Steps:

Identify MAC Addresses: Collect MAC addresses of devices on each production line, servers, maintenance team devices, and guest devices.

Define MAC-based ACLs:

Production Line A MAC ACL: Allow communication between devices on Production Line A and specified servers. Deny communication to all other MAC addresses.

Production Line B MAC ACL: Allow communication between devices on Production Line B, Production Line A devices, and specified servers. Deny communication to all other MAC addresses.

Maintenance MAC ACL: Allow communication between maintenance team devices and all other MAC addresses.

Configure MAC-based ACLs on the MOXA Switch:

- 1. Access the MOXA switch's CLI or web interface.
- 2. Define MAC ACLs

Test Connectivity: Verify that the MAC ACLs are working as expected by testing connectivity between devices on different production lines, maintenance team devices, and quest devices.

Monitor and Adjust: Regularly monitor network traffic and access patterns. Adjust MAC ACL rules as needed to accommodate changes in the plant's requirements or network topology.

By implementing MAC-based ACLs on the MOXA Layer 2 switch, you can control inter-line communication and guest access to the network according to the plant's security and access policies.

Access Control List

Menu Path: Security > Network Security > Access Control List

This page lets you configure the access control list and its related settings.

This page includes these tabs:

- Settings
- Status

Access Control List - Settings

Menu Path: Security > Network Security > Access Control List - Settings

This page lets you configure your device's access control lists.

O Limitations

You can create up to 32 access lists.

Access Control List

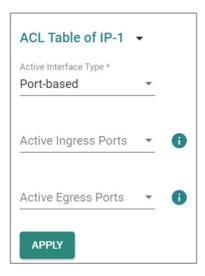

UI Setting	Description
Index	Shows the access list type and its index value.
Name	Shows the name of the access list.

Create an Access List

Menu Path: Security > Network Security > Access Control List - Settings

Clicking the Add () icon on the Security > Network Security > Access Control List - Settings page will open this dialog box. This dialog lets you create an access list.

Click **CREATE** to save your changes and add the new list.



UI Setting	Description	Valid Range	Default Value
Access List Type	Specify the access list type to determine how it should control access.	IP-based / MAC- based	N/A
Index	Specify an index value for the access list.	Drop-down list of index values	N/A
	✓ Note		
	Priority is determined by two factors: index value and address type.		
	Lower index values indicate higher priority. In cases where entries share the same index, MAC addresses take precedence over IP addresses.		

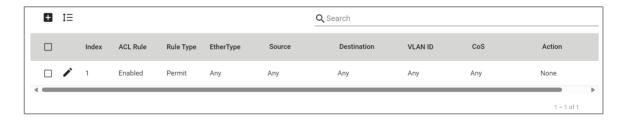
UI Setting	Description	Valid Range	Default Value
Name	Specify a name for the access list.	0 to 127 characters	N/A

ACL Table Settings

You can switch between ACL tables by using the drop-down menu.

UI Setting	Description	Valid Range	Default Value
Active Interface Type	Specify the active interface type.	Port-based / VLAN-based	Port-based
Active Ingress Ports	Specify the active ingress ports.	Drop-down list of ports	N/A
Active Egress Ports	Specify the active egress ports.	Drop-down list of ports	N/A

ACL Rule List (IP-based)


If the currently displayed ACL table is **IP-based**, the following table will appear.

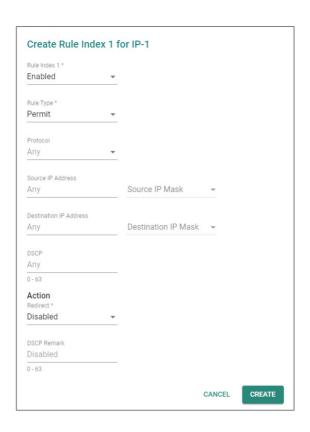
UI Setting	Description
Index	Shows the index number for the ACL rule.
ACL Rule	Shows whether the ACL rule is enabled.
Rule Type	Shows the rule type.
Protocol	Show the protocol used for the ACL rule.
Source	Shows the source IP address with subnet mask for the ACL rule.
Destination	Shows the destination IP address with subnet mask for the ACL rule.
DSCP	Shows the DSCP value used to prioritize packets for the ACL rule.
Optional Parameter	Show the relevant parameters for the selected protocol.
Action	Show whether the redirect action or DSCP remark are enabled. If enabled, their respective configuration settings will be shown.

ACL Rule List (MAC-based)

If the currently displayed ACL table is **MAC-based**, the following table will appear.

UI Setting	Description
Index	Shows the index number for the ACL rule.
ACL Rule	Shows whether the ACL rule is enabled.
Rule Type	Shows the rule type.
EtherType	Shows the EtherType for the ACL rule.
Source	Shows the source MAC address with mask for the ACL rule.

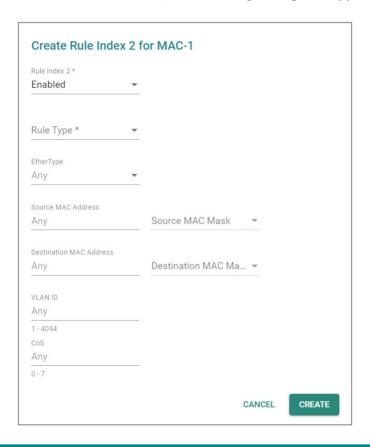
UI Setting	Description
Destination	Shows the destination MAC address with mask for the ACL rule.
VLAN ID	Shows the VLAN ID for the ACL rule.
CoS	Shows the CoS value used to prioritize packets for the ACL rule.
Optional Parameter	Shows the relevant parameters for the selected EtherType.
Action	Shows whether the redirect action or CoS remark are enabled for the ACL rule. If enabled, their respective configuration settings will be shown.


ACL Rule List - Create Rule

Menu Path: Security > Network Security > Access Control List - Settings

Clicking the Add () icon on the Security > Network Security > Access Control List - Settings page will open this dialog box. This dialog lets you create a rule for the displayed ACL table.

Click **CREATE** to save your changes and add the new rule.


If the currently displayed ACL table is **IP-based**, the following table will appear.

UI Setting	Description	Valid Range	Default Value
Rule Index	Enable or disable the rule.	Enabled / Disabled	Enabled
Rule Type	Specify the rule type.	Permit / Deny	N/A
Protocol	Specify the protocol for the ACL rule.	TCP / UDP / ICMP / IGMP / OSPF / User- defined	Any
Source IP Address	Specify the source IP address.	Valid IP address	Any
Source IP Mask	Specify the source IP subnet mask.	Drop-down list of subnet masks	N/A
Destination IP Address	Specify the destination IP address.	Valid IP address	Any
Destination IP Mask	Specify the destination IP subnet mask.	Drop-down list of subnet masks	N/A
DSCP	Specify a DSCP value to prioritize packets for the ACL rule.	0 to 63	Any

UI Setting	Description	Valid Range	Default Value
Action - Redirect	Enable or disable redirects.	Enabled / Disabled	Disabled
(If Rule Type is Permit)			
Action - DSCP Remark	Enable adding a DSCP remark by specifying a DSCP Remark value. To disable it, leave this	0 to 63	Disabled
(If Rule Type is Permit)	blank.		

If the displayed ACL table is **MAC-based**, the following dialog will appear.

UI Setting	Description	Valid Range	Default Value
Rule Index	Enable or disable the rule.	Enabled / Disabled	Enabled
Rule Type	Specify the rule type.	Permit / Deny	N/A
EtherType	Specify the EtherType for the ACL rule.	GOOSE / SMV / User-defined	Any

UI Setting	Description Valid Range		Default Value
Source MAC Address	Specify a source MAC address. Valid MAC address		Any
Source MAC Mask	Select a source MAC mask.	Drop-down list of MAC masks	N/A
Destination MAC Address	Specify a destination MAC address.	Valid MAC address	Any
Destination MAC Mask	Specify a destination MAC mask.	Drop-down list of MAC masks	N/A
VLAN ID	Specify the VLAN ID for the ACL rule.	1 to 4094	Any
CoS	Specify a CoS value to prioritize packets for the ACL rule.	0 to 7	Any
Action - Redirect	Enable or disable redirects.	Enabled / Disabled	Disabled
(If Rule Type is Permit)			
Action - CoS Remark	Enable adding a CoS remark by specifying a CoS Remark value. To disable it, leave this blank.	0 to 7	Disabled
(If Rule Type is Permit)			

Access Control List - Status

Menu Path: Security > Network Security > Access Control List - Status

This page lets you view the ACL summary, access control list and the ACL table.

ACL Summary

UI Setting	Description
Number of activated ACLs (Max. 16)	Show the number of activated ACLs.
Index	Show the access list type and its index value.
Name	Show the name of the access list.
Activated	Show whether the ACL is enabled.
Direction	Show the direction odf the ACL.

ACL Table Status

If **IP-index** is selected for ACL table, the following table will appear.

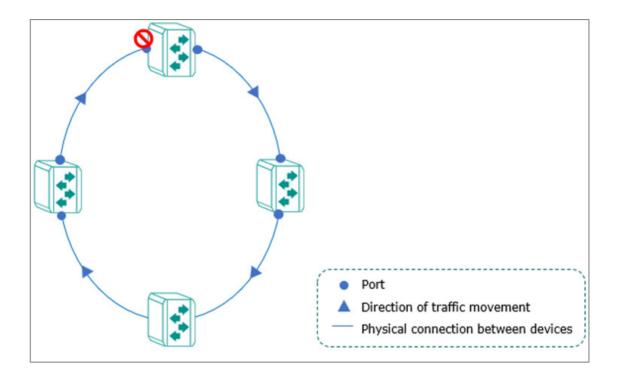
UI Setting	Description	
Name	Show the name of the access list.	

UI Setting	Description
Active Ingress Port	Show the active ingress ports configured.
Active Egress Port	Show the active egress ports configured.
Index	Show the index number for the ACL rule.
ACL Rule	Show whether the ACL rule is enabled.
Rule Type	Show the rule type.
Protocol	Show the protocol used for the ACL rule.
Source	Show the source IP address with its subnet mask.
Destination	Show the destination IP address with its subnet mask.
DSCP	Show the DSCP value specified to differentiate the prioritization of IP packets.
Optional Parameter	Show the relevant parameters for the selected protocol.
Action	Show whether the redirect action and DSCP remark are enabled. If enabled, display their respective configuration settings.
Hit Count	Show the hit count of the ACL rule.

If **MAC-index** is selected for ACL table, the following table will appear.

UI Setting	Description	
Name	Show the name of the access list.	

UI Setting	Description
Active Ingress Port	Show the active ingress ports configured.
Active Egress Port	Show the active egress ports configured.
Index	Show the index number for the ACL rule.
ACL Rule	Show whether the ACL rule is enabled.
Rule Type	Show the rule type.
EtherType	Show the EtherType used for the ACL rule.
Source	Show the source MAC address with its mask.
Destination	Show the destination MAC address with its mask.
VLAN ID	Show the VLAN ID.
CoS	Show the CoS value specified to differentiate the prioritization of packets.
Optional Parameter	Show the relevant parameters for the selected EtherType.
Action	Show whether the redirect action and CoS remark are enabled. If enabled, display their respective configuration settings.
Hit Count	Show the hit count of the ACL rule.


Network Loop Protection

Network Loop Protection helps avoid network loops by disabling ports when looping is detected in the network topology. This is designed for devices that do not support redundant protocols, when redundant protocols are not configured, or if the redundant protocol fails.

How Network Loop Protection works

Network Loop Protection prevents looping by sending the detected packet through the network topology to all ports. After receiving a packet, the port will check if the packet was sent by the device itself. If yes, the receiving port will be disabled.

Network Loop protection features cannot prevent ports activating redundant protocols, such as STP/RSTP/ MSTP/Turbo Ring/Ring Coupling/Turbo Chain/Dual Homing or Link Aggregation from looping, as these ports do not process detected packets sent by Network Loop protection.

Network Loop Protection

Menu Path: Security > Network Security > Network Loop Protection

This page lets you manage network loop protection for your device.

This page includes these tabs:

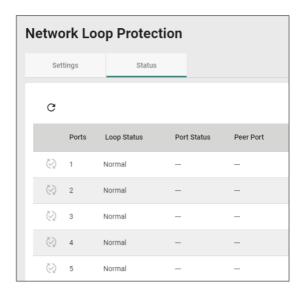
- Settings
- Status

Network Loop Protection - Settings

Menu Path: Security > Network Security > Network Loop Protection - Settings

This page lets you enable network loop protection settings.

Network Loop Protection Settings


UI Setting	Description	Valid Range	Default Value
Network Loop Protection	Enable or disable the network loop protection.	Enabled / Disabled	Disabled
Detect Interval	Specify the detect interval in seconds.	1 to 30	10

Network Loop Protection - Status

Menu Path: Security > Network Security > Network Loop Protection - Status

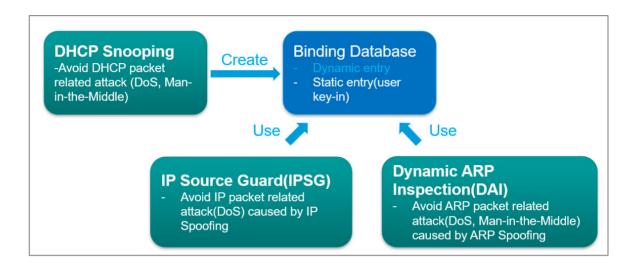
This page lets you view the status of network loop protection.

Network Loop Protection - Port List

UI Setting	Description
Ports	Shows the port number the entry is for.
Loop Status	 Normal: The port is not looping. Looping: The port is looping.
Port Status	Shows the port status of the specific port. • Disabled : The port is disabled due to a port shutdown or detected loop.
Peer Port	Shows the port where the looping frames are from when detecting a loop.

Binding Database

A binding database acts as an allowlist for IP Source Guard and Dynamic ARP Inspection to help protect against unauthorized traffic.


How a Binding Database Works

A binding database consists of dynamic entries and static entries.

• **Dynamic Entries**: Generated automatically after a DHCP client successfully obtains an IP while DHCP snooping is enabled. The entry will be released after exceeding the IP lease time or upon disabling DHCP snooping.

• **Static Entries**: User-generated/edited entry. The entry will be released only when a user deletes it.

Binding database entries consist of VLAN IDs, MAC addresses, ports, and IP addresses. This information forms an allowlist used by IP Source Guard to filter IP packets, and for Dynamic ARP Inspection to filter ARP packets. This helps prevent spoofing attacks such as man-in-the-middle and denial-of-service attacks.

Configuring Binding Database

Binding Database is the base for IP Source Guard and Dynamic ARP Inspection, there are two ways to populate Binding Database entries, including entries automatically created after enabling DHCP Snooping or manually entries created by users.

Before you begin:

• Determine which kind of Binding Database Entries to use: Static, or Dynamic. See above for guidelines to make this determination.

Configuring Dynamic Binding Database Entries

To configure a Dynamic Binding Database entry:

- 1. Go to Security > Network Security > DHCP Snooping.
- 2. Click DHCP Snooping and then select Enable, optionally specify a VLAN ID, and then click Apply.

- 3. Under Port Settings, click **Edit** () to configure the corresponding port binding settings.
- 4. Configure the following:
 - Status• Copy configurations to ports
- 5. Click Apply

Results: The Binding Database entries will be created upon a successful DHCP transaction on DHCP Snooping-enabled Untrusted ports. You can view the binding database entries by going to **Security > Network Security > Binding Database > Binding Status.**

Configuring Static Binding Database Entries

To configure a Static Binding Database Entry:

- 1. Go to Security > Network Security > Binding Database. > Binding Setting.
- 2. Click (Add), and then specify all of the following:
 - VLAN ID● MAC Address● Port● IP Address
- 3. Click **Create** to add the entry to the database.

Results: The Binding Database entries will be created upon a successful DHCP transaction on DHCP Snooping-enabled Untrusted ports. You can view the binding database entries by going to **Security > Network Security > Binding Database > Binding Status.**

Binding Database

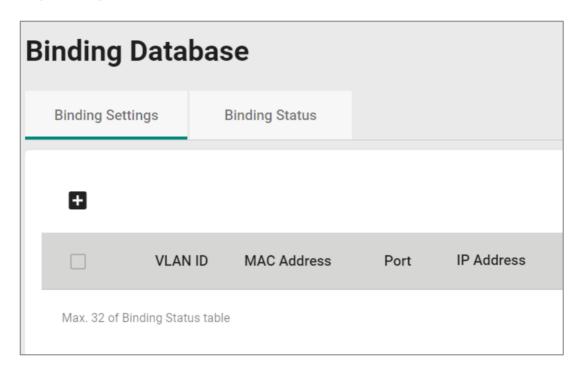
Menu Path: Security > Network Security > Binding Database

This page lets you view and manage the binding database, which can be used for an allowlist for IP Source Guard or Dynamic ARP Inspection.

This page includes these tabs:

- Binding Settings
- · Binding Status

O Limitations

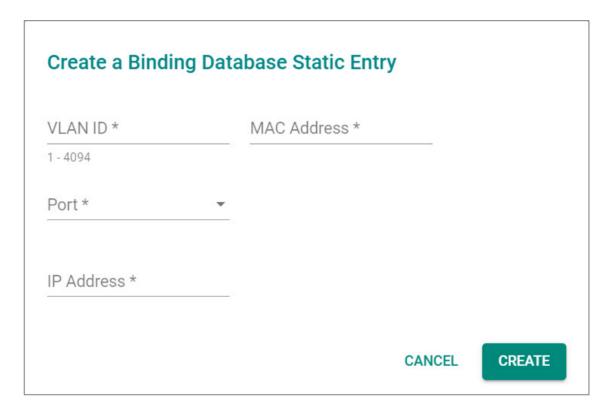

You can create up to 32 binding database entries, including dynamic and static entries. Entries will stop being generated or being user-addable when the this limit is reached. More entries can only be added when existing entries are released, bringing the total number below 32.

Binding Settings

Menu Path: Security > Network Security > Binding Database - Binding Settings

This page lets you manage the static entries you want to use for an allowlist.

Binding Settings List

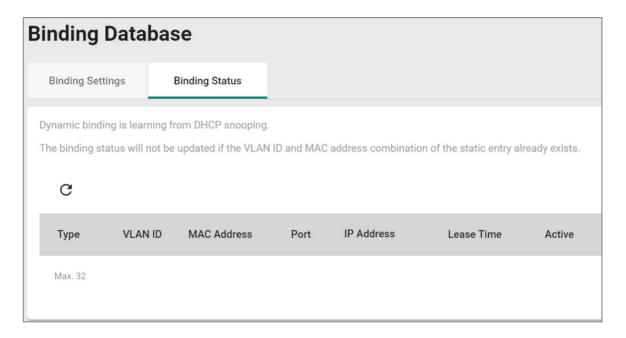

UI Setting	Description
VLAN ID	Shows the VLAN ID for the static entry.
MAC Address	Shows the MAC address for the static entry.
Port	Shows the port for the static entry.
IP Address	Shows the IP address for the static entry.

Create a Binding Database Static Entry

Menu Path: Security > Network Security > Binding Database - Binding Settings

Clicking the Add () icon on the Security > Network Security > Binding Database - Binding Settings page will open this dialog box. This dialog lets you to configure the Static entries to be whitelist base for IP Source Guard or Dynamic ARP Inspection.

Click **CREATE** to save your changes and add the new account.


UI Setting	Description Valid Range		Default Value
VLAN ID	Specify the VLAN ID as the whitelist of IP Source Guard or 1 to 4094 N/A Dynamic ARP Inspection.		N/A
MAC Address	Specify the the MAC address as the whitelist of IP Source MAC Address N/A Guard or Dynamic ARP Inspection.		N/A
Port	Specify the port as the whitelist of IP Source Guard or Drop-dwon list N/. Dynamic ARP Inspection. Drop-dwon list of ports		N/A
IP Address	Specify the IP address as the whitelist of IP Source Guard or Dynamic ARP Inspection.	Valid IP address	N/A

Binding Status

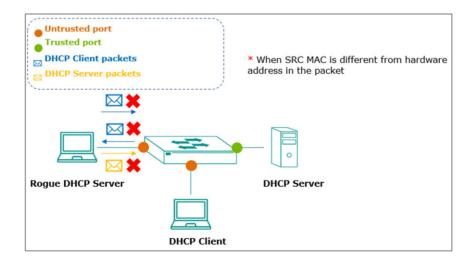
Menu Path: Security > Network Security > Binding Database - Binding Status

This page lets you view the current binding database entries of your device.

Binding Status List

UI Setting	Description
VLAN ID	Shows the VLAN ID for a successful DHCP packet transaction on an untrusted port, or the specified VLAN ID for a user-created static entry.
MAC Address	Shows the MAC address for a successful DHCP packet transaction on an untrusted port, or the specified MAC address for a user-created static entry.
Port	Shows the untrusted port for a successful DHCP packet transaction, or the specified port for a user-created static entry.
IP Address	Shows the IP address for a successful DHCP packet transaction on an untrusted port, or the specified IP address for a user-created static entry.
Lease Time	Shows the lease time for the entry to be active. The lease time is infinite for user-created static entries.
Active	Shows whether the entry is active for use with IP Source Guard, Dynamic ARP Inspection, or both.

DHCP Snooping


DHCP Snooping is a VLAN-specific security feature for DHCP operations. You can configure untrusted hosts and trusted DHCP servers for corresponding ports on your device, and then the feature will act like a firewall to validate DHCP messages received from untrusted sources and filter out invalid messages to exclude rogue DHCP servers and remove malicious DHCP traffic. This helps guarantee that clients obtain a legal address from the DHCP server you designate.

Enabling DHCP snooping will also set up a binding database, which will act as an allowlist for IP Source Guard and Dynamic ARP Inspection.

How DHCP Snooping works

Configuring the designated ports connected to DHCP server ports as trusted ports and the ports connected to clients/hosts as untrusted ports:

- The trusted ports will pass all of the DHCP packets.
- The behavior for the untrusted ports are as follows:
 - a. Pass the ingress DHCP client packets and the egress DHCP server packets to complete the normal DHCP transaction.
 - b. Drop the egress DHCP client packets and the ingress DHCP server packets to avoid the rogue DHCP Server attack.
 - c. Drop DHCP client type packets with a different source MAC address and hardware address to avoid malicious DHCP client attack.

The successful DHCP transaction with DHCP Snooping enabled will create and update the Binding Database. Binding Database contains VLAN ID, MAC Address, untrusted port of DHCP clients and IP Address. Binding Database can also be used for other security functions, such as IP Source Guard and Dynamic ARP Inspection.

Configuring DHCP Snooping on the switch

Enable DHCP Snooping on the switch to setup DHCP packet filtering mechanism to avoid DHCP related malicious attack and create a white list(Binding Database) for IP Source Guard and Dynamic ARP Inspection via successful DHCP transaction through Untrusted ports.

The following steps tells you how to configure DHCP Snooping in the switch:

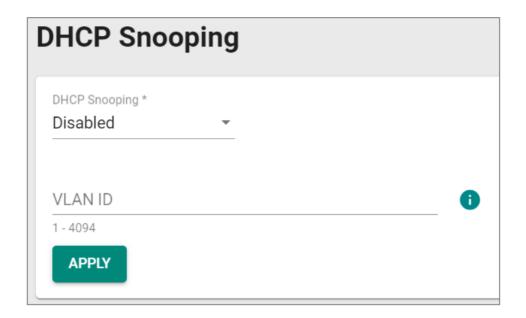
- 1. To enable DHCP Snooping globally for a specific VLAN
- 2. click **Edit (^)** on the port settings to configure the Trusted or Untrusted status for individual ports. Typically configure the ports connected to an untrusted source such as hosts as Untrusted ports (otherwise as Trusted port such as DHCP server).
- 3. When finished, click **APPLY** to save your changes.

✓ Note

The port status cannot be changed to trusted port if the port is enabled by Dynamic ARP Inspection or IP Source Guard.

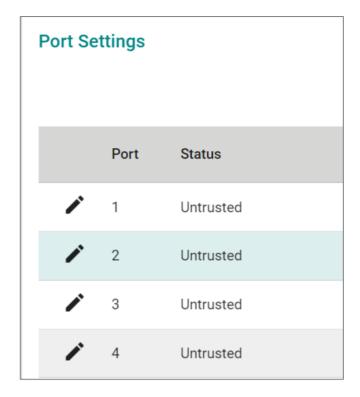
Results:

Trusted Ports	Untrusted Ports	
Pass all of the DHCP packets.	1.	Pass the ingress DHCP client packets and the egress DHCP server packets to complete the normal DHCP transaction.
	2.	Drop the egress DHCP client packets and the ingress DHCP server packets to avoid the rogue DHCP Server attack.
	3.	Drop DHCP client type packets with a different source MAC address and hardware address to avoid malicious DHCP client attack.


To enable DHCP Snooping will also set up Binding Database and the database will act as an allowlist for IP Source Guard and Dynamic ARP Inspection.

DHCP Snooping

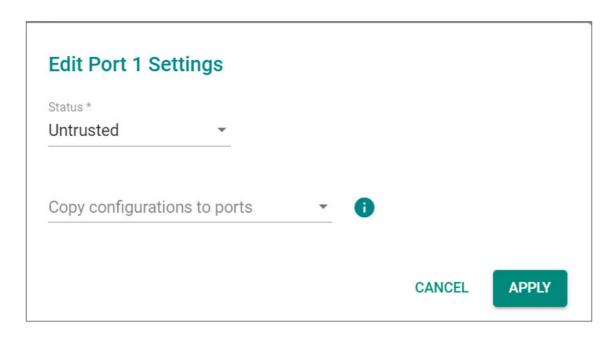
Menu Path: Security > Network Security > DHCP Snooping


This page lets you manage DHCP Snooping for your device.

DHCP Snooping Settings

UI Setting	Description	Valid Range	Default Value
DHCP Snooping	Enable or disable DHCP snooping.	Enabled / Disabled	Disabled
VLAN ID	Specify the VLAN IDs to use for DHCP snooping. You can enter multiple VLAN IDs by separating them with commas or by using ranges (e.g., 2, 4-8, 10-13).	1 to 4094	N/A

DHCP Snooping - Port Settings


UI Setting	Description
Port	Shows the port number the entry is for.
Status	Shows whether the port is trusted or untrusted.

DHCP Snooping - Edit Port Settings

Menu Path: Security > Network Security > DHCP Snooping

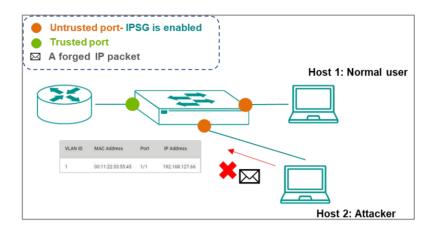
Clicking the **Edit** () icon for a port on the **Security** > **Network Security** > **DHCP Snooping** page will open this dialog box. This dialog lets you configure the port as trusted or untrusted for DHCP snooping.

Click **APPLY** to save your changes.

UI Setting	Description	Valid Range	Default Value
Status	Specify the port as untrusted or trusted.	Untrusted / Trusted	Untrusted
Copy configurations to ports	Select the ports you want to copy this configuration to.	Drop-down list of ports	N/A

IP Source Guard

IP Source Guard (IPSG) is an IP data packet filtering security feature that works on Layer 2 interfaces. It works together with DHCP Snooping and the Binding Database to filter IP data packets to defend against attacks such as denial-of-service (DoS) that are caused by forging/spoofing source IP addresses.


How IP Source Guard Works

IPSG checks all traffic to make sure its host IP address, MAC address, VLAN, and port match a valid entry in the binding database. If the host does not match a valid entry in the binding database, the traffic will not be forwarded.

✓ Note

IP Source Guard (IPSG) works with DHCP snooping, so DHCP snooping must be enabled to create binding database entries before enabling IPSG

IPSG can only be used on ports specified as "untrusted" for DHCP snooping.

Enable or disable IP Source Guard for each port to filter the IP data packet.

For the ports specified as Untrusted ports in DHCP Snooping, enable IP Source Guard to filter IP data packet based on entries stored in the Binding Database.

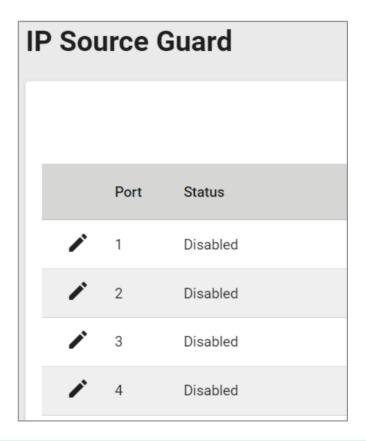
Before you begin:

- Make sure the related information of the ports you want to enable IP Source
 Guard including VLAN ID, MAC Address, Port, and IP Address exist in Binding
 Database, if it doesn't exist, you can enable DHCP Snooping for dynamic
 leaning(refer to Binding Database chapter for dynamic learning), or manually key
 in the entry in the Binding Status.
- Specify ports you want to enable IP Source Guard as Untrusted ports in DHCP Snooping feature.

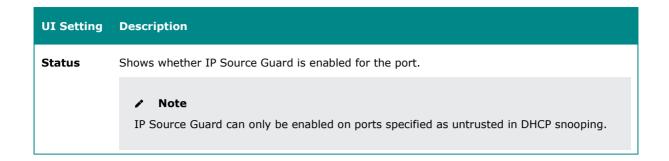
Click **Edit (^)** on the port setting to enable or disable IPSG for untrusted ports specified in the DHCP Snooping feature.

Result: The IP data packet will be filtered against the IP address, MAC address, VLAN, and port recorded in the Binding Data Base Entry once the IP Source Guard has been enabled.

✓ Note


Please note IPSG can only be enabled on untrusted ports specified in DHCP Snooping feature.

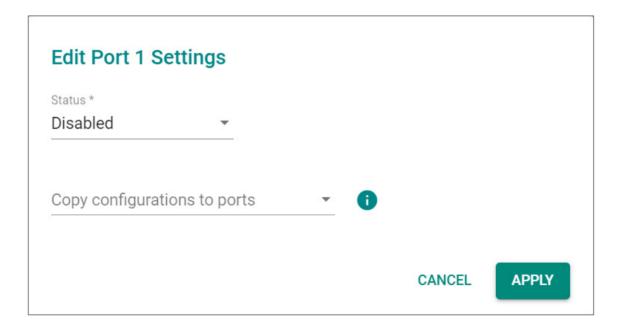
IP Source Guard


Menu Path: Security > Network Security > IP Source Guard

This page lets you enable or disable IP Source Guard for each port.

IP Source Guard List

UI Setting	Description
Port	Shows the port number the entry is for.


IP Source Guard - Edit Port Settings

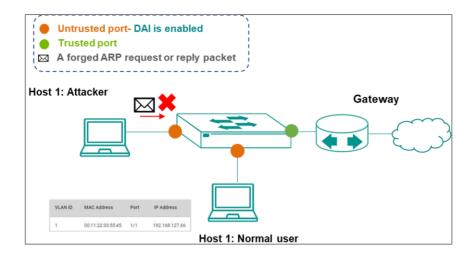
Menu Path: Security > Network Security > IP Source Guard

Clicking the **Edit** () icon for a port on the **Security** > **Network Security** > **IP Source Guard** page will open this dialog box. This dialog lets you enable or disable IP

Source Guard for the port.

Click **APPLY** to save your changes.

UI Setting	Description	Valid Range	Default Value
Status	Enable or disable IP Source Guard for the port. When enabled, only traffic with packet headers that have a source IP and MAC address that match a valid entry in the Binding Database will be forwarded.	Enabled / Disabled	Disabled
	✓ Note IP Source Guard can only be enabled on ports specified as untrusted in DHCP snooping.		
Copy configurations to ports	Select the ports you want to copy this configuration to.	Drop-down list of ports	N/A


Dynamic ARP Inspection

Dynamic ARP Inspection (DAI) is an ARP packet filtering security feature that works on Layer 2 interfaces. It works together with DHCP snooping and the binding database to help defend against attacks such as man-in-the-middle or denial-of-service (DoS) attacks caused by ARP packet spoofing (also known as ARP poisoning or ARP cache poisoning).

How Dynamic ARP Inspection Works

Dynamic ARP Inspection (DAI) works with DHCP Snooping. Users must enable DHCP snooping to create Binding Database entries before enabling DAI, and DAI can only be used on ports specified as untrusted DHCP Snooping.

DAI inspects each ARP packet sent from a host attached to an untrusted port on the switch. The IP address, MAC address, VLAN, and port associated with the host are checked against entries stored in the Binding Database. If the host information does not match a valid entry in the Binding Database, the ARP packet will not be forwarded.

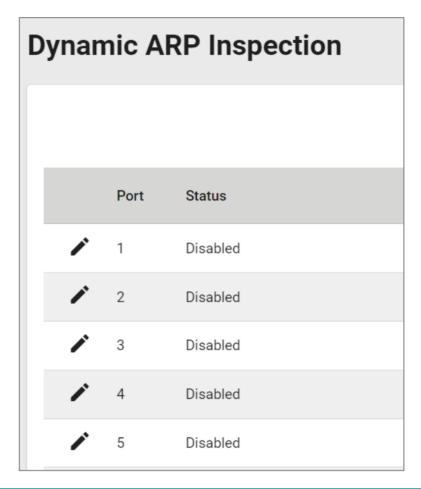
Before you begin:

- Make sure the related information of the ports you want to enable Dynamic ARP
 Inspection including VLAN ID, MAC Address, Port, and IP Address exist in Binding
 Database, if it doesn't exist, you can enable DHCP Snooping for dynamic
 leaning(refer to Binding Database chapter for dynamic learning), or manually key
 in the entry in the Binding Status.
- Specify ports you want to enable Dynamic ARP Inspection as Untrusted ports in DHCP Snooping feature.

Click **Edit (^)** on the port setting to enable or disable DAI for untrusted ports specified in the DHCP Snooping feature.

Result: The ARP packet will be filtered against the IP address, MAC address, VLAN, and port recorded in the Binding Data Base Entry once the DAI has been enabled.

✓ Note

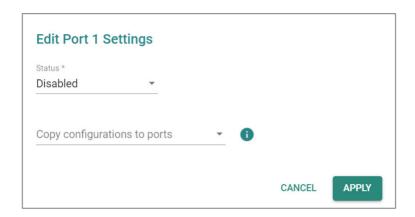

Please note DAI can only be enabled on untrusted ports specified in DHCP Snooping feature.

Dynamic ARP Inspection

Menu Path: Security > Network Security > Dynamic ARP Inspection

This page lets you enable or disable Dynamic ARP Inspection for each port.

Dynamic ARP Inspection List


UI Setting	Description	
Port	Shows the port number the entry is for.	
Status	Shows whether Dynamic ARP Inspection is enabled for the port.	
	✔ Note Dynamic ARP Inspection can only be enabled on ports specified as untrusted in DHCP snooping.	

Dynamic ARP Inspection - Edit Port Settings

Menu Path: Security > Network Security > Dynamic ARP Inspection

Clicking the **Edit** () icon for a port on the **Security** > **Network Security** > **Dynamic ARP Inspection** page will open this dialog box. This dialog lets you enable or disable Dynamic ARP Inspection for the port.

Click **APPLY** to save your changes.

UI Setting	Description	Valid Range	Default Value
Status	Enable or disable Dynamic ARP Inspection for the port. When enabled, ARP packets are inspected, and only ARP packets that have a source IP and MAC address that match a valid entry in the Binding Database will be forwarded.	Enabled / Disabled	Disabled
	Note Dynamic ARP Inspection can only be enabled on ports specified as untrusted in DHCP snooping.		
Copy configurations to ports	Select the ports you want to copy this configuration to.	Drop-down list of ports	N/A

Authentication

Menu Path: Security > Authentication

This section lets you manage the authentication features of your device.

This section includes these pages:

- Login Authentication
- RADIUS
- TACACS+

Login Authentication

Your device can authenticate user logins to protect against unauthorized access to your device.

How Login Authentication Works

Your device has three different methods of authenticating user logins:

- TACACS+ (Terminal Access Controller Access-Control System Plus)
- RADIUS (Remote Authentication Dial In User Service)
- Local database

TACACS+ and RADIUS are centralized "AAA" (Authentication, Authorization, and Accounting) systems for connecting to network services. The fundamental purpose of these is to provide an efficient and secure mechanism for user account management.

You can use different combinations of these authentication methods:

- 1. **TACACS+**, **Local:** Check the TACACS+ database first. If checking the TACACS+ database fails, then check the local database.
- 2. **RADIUS, Local:** Check the RADIUS database first. If checking the RADIUS database fails, then check the local database.
- 3. **TACACS+:** Only check the TACACS+ database.
- 4. **RADIUS:** Only check the RADIUS database.
- 5. **Local:** Only check the local database.

Login Authentication

Menu Path: Security > Authentication > Login Authentication

This page lets you to select the login authentication protocol for your device.

Login Authentication Settings

Login Authentication		
Authentication Protocol		
Local		
RADIUS		
○ TACACS+		
RADIUS, Local		
TACACS+, Local		
APPLY		

UI Setting	Description	Valid Range	Default Value
Authentication Protocol	Select the login authentication protocol to use for your device. • Local: Only the local database will be checked for login authentication. • RADIUS: Only the RADIUS database will be checked for login authentication. • TACACS+: Only the TACACS+ database will be checked for login authentication. • RADIUS, Local: The RADIUS database will be checked first for login authentication. If checking the RADIUS database fails, then the local database will be checked. • TACACS+, Local: The TACACS+ database will be checked first for login	Local / RADIUS / TACACS+ / RADIUS, Local / TACACS+, Local	Local
	•		

RADIUS

RADIUS, or Remote Authentication Dial-In User Service, acts like a central security checkpoint for your network. It verifies the identities of users and devices trying to connect, ensuring only authorized ones gain access. Imagine it as a doorman for your switch – RADIUS checks credentials and grants permission to enter the network, enhancing overall security. This centralized approach simplifies user management and eliminates the need for individual security configurations on each device. RADIUS is particularly useful for businesses with many users, devices, or remote access needs.

RADIUS

Menu Path: Security > Authentication > RADIUS

This page lets you configure the RADIUS settings for your device.

RADIUS Settings

Note

After leaving this page or refreshing, the Share Key fields will automatically be cleared to enhance security.

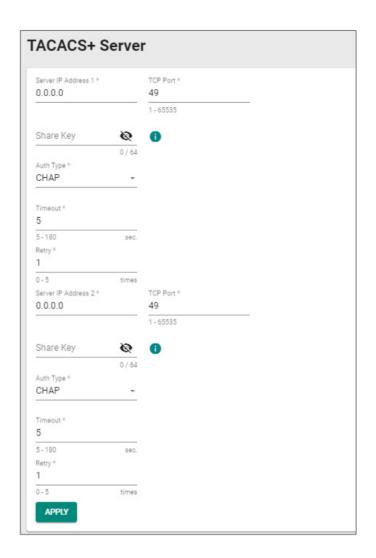
UI Setting	Description	Valid Range	Default Value
Server Address 1/2	Specify the address of the first/second RADIUS server.	Valid IP address	0.0.0.0
UDP Port	Specify the UDP port for the RADIUS server.	1 to 65535	1812
Share Key	Input the share key for server authentication verification.	0 to 64 characters	N/A
Authentication Type	Select the authentication type to use for the RADIUS server.	PAP / CHAP / MS- CHAPv1 / MS-CHAPv2	СНАР
Timeout (sec.)	Specify how long in seconds to wait for a response from the RADIUS server before timing out.	5 to 180	5

UI Setting	Description	Valid Range	Default Value
Retry (sec.)	Specify how many times to try reconnecting to the RADIUS server.	0 to 5	1

TACACS+

TACACS+, Terminal Access Controller Access Control System Plus, goes beyond simple user authentication. Think of it as a set of tools for network access control. It verifies users, authorizes their actions (like read, write, or configure), and keeps a detailed log of activity. This granular control allows you to restrict what users can do on specific network devices, ensuring security and compliance. TACACS+ is especially beneficial for network administrators who need to manage user access privileges and track activity across multiple devices.

TACACS+


Menu Path: Security > Authentication > TACACS+ Server

This page lets you configure the TACACS+ settings for your device.

TACACS+ Settings

After leaving this page or refreshing, the Share Key fields will automatically be cleared to enhance security.

UI Setting	Description	Valid Range	Default Value
Server Address 1/2	Specify the address of the first/second TACACS+ server.	Valid IP address	0.0.0.0
TCP Port	Specify the TCP port for the TACACS+ server.	1 to 65535	49
Share Key	Specify the share key for server authentication verification.	0 to 64 characters	N/A
Authentication Type	Select the authentication type to use for the TACACS+ server.	ASCII / PAP / CHAP	СНАР
Timeout (sec.)	Specify how long in seconds to wait for a response from the TACACS+ server before timing out.	5 to 180	5

UI Setting	Description	Valid Range	Default Value
Retry	Specify how many times to try reconnecting to the TACACS+ server.	0 to 5	1

Diagnostics

Menu Path: Diagnostics

This section lets you configure the diagnostics settings.

This section includes these pages:

- System Status
- Network Status
- Tools
- Event Logs and Notifications

System Status

Menu Path: Diagnostics > System Status

This section lets you view the current system status.

This section includes these pages:

• Resource Utilization

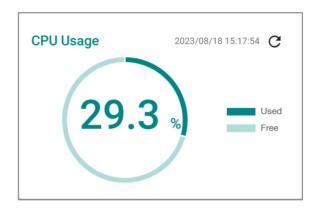
Resource Utilization

Resource Utilization provides a set of monitoring tools to give you insights into the switch's current and historical resource usage.

These tools typically include:

- **CPU Utilization:** Percentage of CPU processing power currently being used by the device.
- **Memory History:** Historical trend of memory usage over time.
- **Power Consumption:** Current power consumption of the device.
- **Power History:** Historical trend of power consumption over time.

Resource Utilization

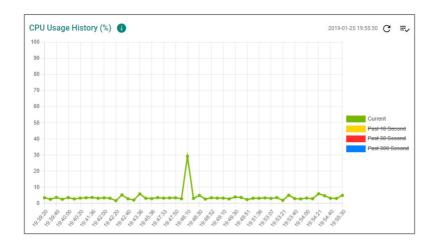

Menu Path: Diagnostics > System Status > Resource Utilization

This page lets you monitor current and historical system resource utilization.

CPU Usage

This display shows the device's CPU usage.

Click the **Refresh** ($^{\mathbb{C}}$) icon to refresh the graph.

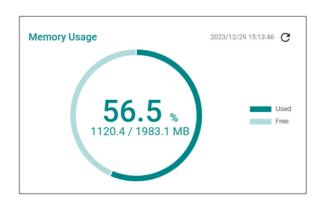

UI Setting	Description
CPU Usage	Displays the current utilization of the CPU.

CPU Usage History (%)

The device's CPU usage will be shown as a percentage over time.

Click the **Refresh** ($^{\mathbb{C}}$) icon to refresh the graph.

Click the icon on the top-right corner of the widget to select which data to display.

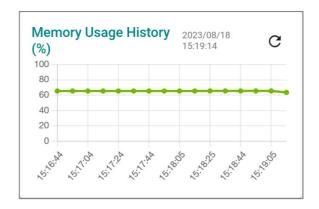


UI Setting	Description
CPU Usage History	Displays the CPU usage history trend in a chart.

Memory Usage

This display shows the device's memory usage.

Click the **Refresh** ($^{\mathbb{C}}$) icon to refresh the graph.



UI Setting	Description
Memory Usage	Displays the memory utilization status.

Memory Usage History

The device's memory usage will be shown as a percentage over time.

Click the **Refresh** ($^{\mathbb{C}}$) icon to refresh the graph.

UI Setting	Description
Memory Usage History	Displays the history of the memory usage.

Network Status

Menu Path: Diagnostics > Network Status

This section lets you view the network status.

This section includes these pages:

- Network Statistics
- LLDP

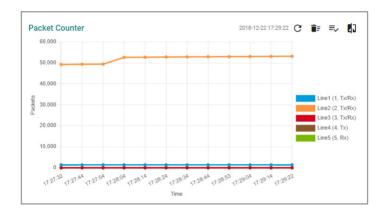
Network Statistics

Network Statistics provides monitoring tools that give you a real-time view of traffic flowing through the device.

This information typically includes:

- **Packet Counter:** The number of data packets being transmitted and received within a specific period of time, providing a crucial metric for assessing the activity and load on a network's infrastructure.
- **Bandwidth Utilization:** The percentage of the total bandwidth currently being used for data transmission.

Network Statistics


Menu Path: Diagnostics > Network Status > Network Statistics

This page lets you see the real-time packet and bandwidth status for your device.

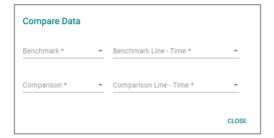
Network Status Display

You can switch between **Packet Counter** and **Bandwidth Utilization** views by clicking on the **Display Settings** ($\stackrel{=}{\sim}$) icon on the top-right.

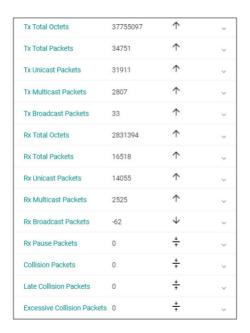
- **Packet Counter**: This view shows how many packets are being handled over time. This view updates every 5 seconds.
- **Bandwidth Utilization**: This view shows bandwidth utilization over time. This view updates every 3 seconds.

UI Setting	Description
Refresh (^C)	Updates statistics immediately without waiting for the refresh interval.
Reset the Statistics Graph ()	Clears the display and resets display settings back to defaults.
(For Packet Counter display only)	
Display Settings ([≡] √)	Opens Display Settings , which allows you to switch between Packet Counter and Bandwidth Usage view, and add lines based on user-defined criteria.
Compare Data () (For Packet Counter display only)	Compare data by selecting a benchmark line and time and a comparison line and time.

Display Settings

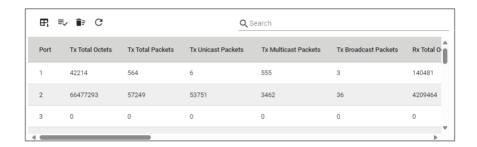

UI Setting	Description	Valid Range	Default Value
Display Mode	Select whether to show the Packet Counter or the Bandwidth Usage display.	Packet Counter / Bandwidth Usage	Packet Counter
Line 1-5 Monitoring Port	Select which port to monitor for the line.	Drop-down list of ports	Line 1: 1 Line 2: 2 Line 3: 3 Line 4: 4 Line 5: 5
Line 1-5 Sniffer (If Display Mode is Packet Counter)	 Select which type of traffic to monitor for the line. Tx/Rx: Monitor both transmit and receive traffic. Tx: Only monitor transmit traffic. Rx: Only monitor receive traffic. 	Tx/Rx / Tx / Rx	Line 1: Tx/Rx Line 2: Tx/Rx Line 3: Tx/Rx Line 4: Tx Line 5: Rx

Compare Data Settings


If you click on the **Compare icon (4)** for the **Packet Counter** display, this dialog will appear.

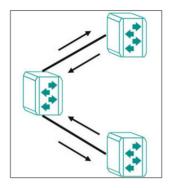
After making your selections, a table will appear that compares various packet statistics between the benchmark and comparison data.

- \uparrow : Shows that the benchmark line number is **higher** than the comparison line.
- $\frac{1}{2}$: Shows that the benchmark line number is **equal** to the comparison line.
- ψ : Shows that the benchmark line number is **lower** than the comparison line.


Comparison Table

UI Setting	Description	Valid Range	Default Value
Benchmark	Specify which line to use as the benchmark.	Drop-down list of monitored port and sniffer combinations	N/A
Benchmark Line - Time	Select a timestamp to determine which benchmark data to use.	Drop-down list of timestamps	N/A
Comparison	Specify which line to use as the comparison.	Drop-down list of monitored port and sniffer combinations	N/A
Comparison Line - Time	Select a timestamp to determine which comparison data to use.	Drop-down list of timestamps	N/A

Network Statistics Table


This table shows various packet statistics for each port.

LLDP

Link Layer Discovery Protocol (LLDP) is an OSI Layer 2 protocol defined by IEEE 802.11AB. LLDP standardizes the self-identification advertisement method, and allows each networking device to periodically send its system and configuration information to its neighbors. Because of this, all LLDP devices are kept informed of each other's status and configurations. With SNMP, this information can be transferred to Moxa's MXview for auto-topology and network visualization.

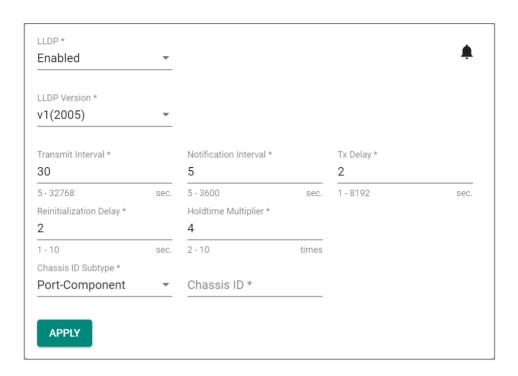
From the switch's web interface, you can enable or disable LLDP, and set the LLDP transmit interval. In addition, you can view each switch's neighbor list, which is reported by its network neighbors. Most importantly, enabling the LLDP function allows Moxa's MXview to automatically display the network's topology and system setup details, such as VLAN and Trunking for the entire network.

LLDP

Menu Path: Diagnostics > Network Status > LLDP

This page lets you configure Link Layer Discovery Protocol (LLDP) for your device.

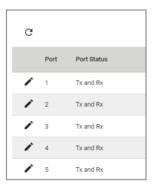
This page includes these tabs:


- Settings
- Status

LLDP - Settings

Menu Path: Diagnostics > Network Status > LLDP - Settings

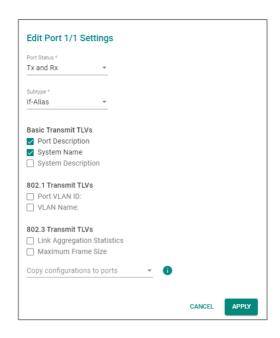
This page lets you configure Link Layer Discovery Protocol (LLDP) settings.


LLDP - Settings

UI Setting	Description	Valid Range	Default Value
LLDP	Enable or disable Link Layer Discovery Protocol (LLDP).	Enabled / Disabled	Enabled
LLDP Version	Shows the LLDP version.	v1(2005)	v1(2005)
Transmit Interval	Specify how long in seconds the interval will be in between sending LLDP messages.	5 to 32768	30
Notification Interval	Specify how long in seconds the interval will be in between sending notifications.	5 to 3600	5
Tx Delay	Specify how long in seconds the interval will be in between successive LLDP frame transmissions initiated by changes.	1 to 8192	2
Reinitialization Delay	Specify how long in seconds the delay will be before reinitializing an LLDP packet transmission.	1 to 10	2

UI Setting	Description	Valid Range	Default Value
Holdtime Multiplier	Specify how long in seconds the receiving device will hold an LLDP packet before discarding it.	2 to 10	4
Chassis ID Subtype	Specify the Chassis ID subtype of the device.	Chassis-Component / If- Alias / Port-Component / MAC-Address / Network- Address / If-Name / Local	MAC- Address
Chassis ID (If Chassis ID Subtype is Chassis-Component, Port-Component, or Local)	Specify the Chassis ID.	MAC address of default VLAN	N/A

LLDP Port List


UI Setting	Description
Port	Shows the port number the entry is for.
Port Status	Show the status of what data is being transmitted for the port.

LLDP - Edit Port Settings

Menu Path: Diagnostics > Network Status > LLDP - Settings

Clicking the **Edit** () icon for a port on the **Diagnostics** > **Network Status** > **LLDP** - **Settings** page will open this dialog box. This dialog lets you configure the LLDP settings for the port.

Click **APPLY** to save your changes.

UI Setting	Description	Valid Range	Default Value
Port Status	Specify the port status for transmitting data.	Tx and Rx / Tx Only / Rx Only	Tx and Rx
Subtype	Specify the Chassis ID subtype for the port.	Chassis-Component / If-Alias / Port-Component / MAC-Address / Network-Address / If-Name / Local	If-Alias
Basic Transmit TLVs	Select the basic information to use for the TLV. You can select multiple options.	Port Description / System Name / System Description	Port Description, System Name
802.1 Transmit TLVs	Select the 802.1 information to use for the TLV. You can select multiple options.	Port VLAN ID / VLAN Name	N/A
802.3 Transmit TLVs	Select the 802.3 information to use for the TLV. You can select multiple options.	Link Aggregation Statistics / Maximum Frame Size	N/A
Copy configurations to ports	Select the ports you want to copy this configuration to.	Drop-down list of ports	N/A

LLDP - Status

Menu Path: Diagnostics > Network Status > LLDP - Status

This page lets you see the status list of LLDP settings.

To view the LLDP status, click the **Status** tab on the LLDP page, and the status of all LLDP will be shown on the page.

Local Information

Local Information

LLDP

Enabled

LLDP Version

v1(2005)

Chassis ID Subtype MAC-Address

Chassis ID

00:01:02:03:04:05

UI Setting	Description
LLDP	Shows whether LLDP is enabled.
LLDP Version	Shows the LLDP version.
Chassis ID Subtype	Shows the chassis ID subtype.
Chassis ID	Shows the chassis ID.

Local Timer

Local Timer

Transmit Interval

30 (sec.)

Notification Interval

5 (sec.)

Tx Delay

2 (sec.)

UI Setting	Description
Transmit Interval	Shows the interval between regular LLDP packet transmissions.
Notification Interval	Shows the interval between sending notifications.
Tx Delay	Shows the delay period between successive LLDP frame transmissions initiated by changes.

Remote Table Statistics

Remote Table Statistics Last Change Time (ms) 1499300 Inserts 2 Drops 0 Delete 1 Ageouts 0

UI Setting	Description
Last Change Time (ms)	Shows how long ago in milliseconds the remote table was last changed.
Inserts	Shows how many inserts have occurred.
Drops	Shows how many drops have occurred.
Delete	Shows how many deletes have occurred.
Ageouts	Shows how many ageouts have occurred.

LLDP Port Status

To view the detailed LLDP status for a specific port, click the **detailed information (**^(j)) icon for the port.

C	民				Q Search		
	Port	Tx Status	Rx Status	Nei	ghbor Port ID	Neighbor Chassis ID	Port Description
(i)	1	Enabled	Enabled				
	Port If-Al Extende Port 10 Extende	cal Interface ID SubType iias ed 802.1 TLV VLAN ID ed 802.3 TLV Aggregation Status	Port ID Eth1/1 VLAN ID / Name 10 / V10 Aggregated Port ID		Port Description Ethernet Interface Po	ort 01 - 100TX,RJ45	
	Port Tra	ibled affic Statistics Frames Out Frames Received In Error	Total Entries Aged Total Frames Discar 0	ded	9216 Total Frames In 0 Total TLVS Unrecognized 0	d Total TLVs Discarded 0	
<u>(i)</u>	2	Enabled	Enabled	7		00:90:e8:a9:ed:2b	100TX
<u>(i)</u>	3	Enabled	Enabled	00:	b5:6d:00:ea:e2	MILESWANG-TNB	
(i)	4	Enabled	Enabled				-
(i)	5	Enabled	Enabled				
(i)	6	Enabled	Enabled				
(i)	7	Enabled	Enabled				
(i)	8	Enabled	Enabled				

UI Setting	Description
Port	Shows the port number the entry is for.
Tx Status	Shows whether LLDP is enabled for transmit traffic.
Rx Status	Shows whether LLDP is enabled for receive traffic.
Neighbor Port ID	Shows the port number of the connected neighbor device's interface that is used to connect to this device.
Neighbor Chassis ID	Shows the unique ID (typically the MAC address) that identifies the neighbor device.

UI Setting	Description
Port Description	Shows the port description of the connected neighbor device's interface that is used to connect to this device.
System Name	Shows the hostname of the neighbor device.

Tools

Menu Path: Diagnostics > Tools

This page lets you use various tools to help troubleshoot network issues.

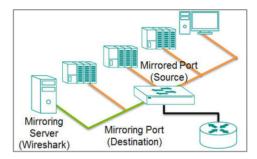
This page includes these tabs:

- Port Mirroring
- Ping

Port Mirroring

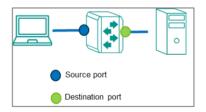
The **Port Mirroring** function can be used to monitor data being transmitted through the specific ports. This is done by setting up mirror ports to receive the same data being transmitted from, or both to and from, the ports under observation. Using mirror ports allows the network administrator to sniff the observed ports to keep tabs on network activity.

The Port Mirroring function includes two features:

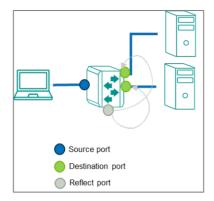

- **SPAN (Switched Port Analyzer):** Mirrors data from monitored ports to multiple terminal ports on the same switch. Up to five sessions can be configured in a switch.
- RSPAN (Remote Switched Port Analyzer): Mirrors data from monitored ports
 on one switch to multiple terminal ports on the other switches. Up to two sessions
 can configured in a switch.

How Port Mirroring Works

SPAN


SPAN can be configured to copy packets from various ports to a single port or multiple ports, so that users can check if there are problems occurring in these ports.

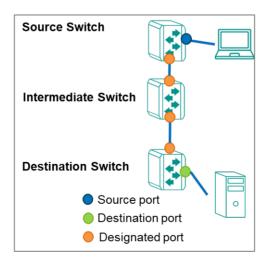
For example, the following figure demonstrates how the packets transmitted in the four mirrored ports (marked in orange) are copied (mirrored) to a single mirroring port (marked in green). These packets will be sent to a monitoring computer and then software is used to check if there is something wrong with these packets. It is a useful function to troubleshoot or monitoring a network data transmission for debug or security purposes.



Copy traffic to single and multiple destination ports are supported.

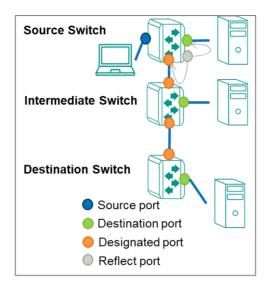
You can specify the ingress, egress or both traffic of source port(s) to be mirrored to the single destination port.

If you want to mirror the ingress, egress or both traffic to multiple destination ports, the reflect port need to be assigned. And the destination ports need to be added to vlan which is the same as reflect port. The specified traffic from source ports will be reflected to the destination ports.



RSPAN

RSPAN can be configured to copy packets from various ports in one or more source switches through intermediate switches to a single or multiple port(s) to destination switches. The PC or monitor server can be connected to destination ports in the destination switch to receive the copy of the original monitored traffic. For example, the following figure demonstrates how the packets transmitted in mirrored ports (marked in blue) are copied (mirrored) through an intermediate switch to two mirroring ports (marked in green).


Copy traffic across multiple intermediate switches to single or multiple destination ports in the other switches are supported.

You can specify the ingress, egress or both traffic of source port(s) in the source switch to be mirrored to the destination ports in destination switches.

If you want to mirror the ingress, egress or both traffic to destination ports in source switch, the reflect port need to be assigned. Destination ports in source switch, intermediate switch and destination switch need to be added to vlan which is the same as

reflect port. The specified traffic from source ports in source switch will be copied to the destination ports.

- You can set source ports in one or more RSPAN source switches. Enable reflect port if one of the destination port(s) is in the source switch, or disable reflect port if no destination port(s) is in the source switch.
- You can configure RSPAN VLAN for monitored traffic to be labeled with a RSPAN VLAN tag and send to an RSPAN destination switch via trunk ports.
- You can configure the ports to join RSPAN vlan, these ports will be destination ports to receive the monitored traffic.
- You can connect a PC that has the server monitoring feature for the ports that are set to be the destination ports to receive the monitored traffic.

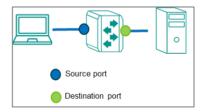
Enabling or disabling Port Mirroring in your switch and configuring the parameters to let the monitored traffic to be copied from source ports to destination ports.

Configuring the source and destination parameters for traffic mirroring, the steps will be different depends on various scenarios, such as the function you use to achieve your goal, SPAN or RSPAN, your switch role in the RSPAN and if you want to mirror traffic only to multiple destination ports in SPAN or to destination port(s) also in the source switch in RSPAN.

Before you begin:

- You need to decide what do you want to use for mirroring traffic to destination ports, SPAN or RSPAN.
- Regarding to SPAN, you need to decide whether you want to copy packets to a single destination port or to multiple destination ports as the configuration steps are different.
- Regarding to RSPAN, you need to decide what is your switch role in each RSPAN topology. Your switch roles can be source switch, intermediate switch or destination switch. The configuration steps are different.
- Also regarding to RSPAN, you need to decide if you want to set destination port(s)
 in the source switch.

The Port Mirroring function includes SPAN and RSPAN which share the same global settings.


Click **General** tab to **Enable** Port Mirroring and **APPLY.**

Configuring SPAN

To configure the SPAN settings, click the SPAN tab, and then click the icon.

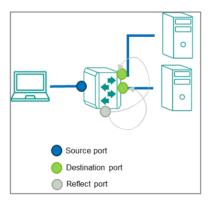
There are two scenarios for configuring SPAN: mirroring traffic to single destination port and mirroring traffic to multiple destination ports.

Mirroring traffic to single destination port

The following steps demonstrate how to copy packets from one or more source port(s) to a single destination port :

1. Select Session ID from drop-down list (1 to 5)

✓ Note


SPAN and RSPAN share 7 sessions, SPAN uses 1 to 5, and RSPAN uses 6 and 7.

- 2. Disable Reflect Port Mode
- 3. Select the monitored packet source port(s), you can select either Tx source port(s) or Rx source port(s), or both.
 - If Tx source port(s) is selected, the egress traffic on the port(s) will be mirrored to the destination port.
 - If the Rx source port(s) is selected, the ingress traffic on the port(s) will be mirrored to the destination port.
- 4. Select the destination port and click **CREATE** to create the SPAN session.

O Limitations

The duplication of source port(s) configured in different sessions is not allowed. The duplication of source port(s) and destination ports in different sessions is not allowed.

Mirroring traffic to multiple destination ports.

The following steps demonstrate how to copy packets from one or more source port(s) to multiple destination ports:

1. Select Session ID from drop-down list (1~5)

✓ Note

SPAN and RSPAN share 7 sessions, SPAN uses 1 to 5, and RSPAN uses 6 and 7.

2. Enable Reflect Port Mode

- 3. Select the monitored packet source port(s), you can select either Tx source port(s) or Rx source port(s), or both.
 - If the Tx source port(s) is selected, the egress traffic on the port(s) will be mirrored to the reflect port.
 - If the Rx source port(s) is selected, the ingress traffic on the port(s) will be mirrored to the reflect port.

Avoid selecting source ports that are in the same VLAN as the reflect port.

4. Select the reflect port from drop-down list.

O Limitations

The port is reserved for reflect traffic to destination ports use, please do not configure for other use.

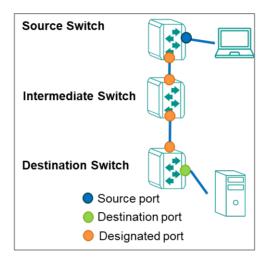
O Limitations

Reflect port must be the member of management VLAN.

- 5. When finished, click **CREATE** to create the SPAN session.
- 6. Go to the VLAN page, configure the port(s) required to receive the packets from source ports as the member port of the same VLAN ID as reflect port.

O Limitations

The duplication of source port(s) configured in different sessions is not allowed. The duplication of source port(s), reflect port, and destination ports in different sessions is not allowed.


Configure RSPAN

To configure the RSPAN settings, click RSPAN and then click the ¹ icon.

Configure the following settings. Users need to decide the switch role for RSPAN first, the switch can be Source switch, Intermediate switch, or Destination switch. The switch can be the Source switch and Destination switch at the same time, but if the switch is not allowed to be the intermediate switch and source switch or destination switch at the same time.

The configuration steps for source switch, intermediate switch and destination switch are different. And the steps will be also different depends on if you want to specify destination port(s) in source or intermediate switch. Here are steps for configuring source switch, intermediate switch and destination switch in different scenarios.

Scenario: The destination port(s) is only in destination switch

Configuring the source switch:

1. Select Session ID from drop-down list (6 and 7). The session can be different between the source switch, intermediate switch, and destination switch for the same mirroring traffic.

Note

SPAN and RSPAN share 7 sessions, SPAN uses 1 to 5, and RSPAN uses 6 and 7.

- 2. Disable Reflect Port Mode.
- 3. Select Source as RSPAN Type.

O Limitations

The RSPAN type cannot be duplicated in different RSPAN sessions, for example, the switch cannot be the source switch in session 6 and the source switch in session 7.

4. Select RSPAN VLAN. The RSPAN VLAN must be the same for any traffic that travels between the source switch, the intermediate switch, and the destination switch.

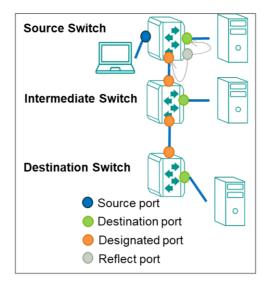
Using the management VLAN or VLAN assignment-configured for RSPAN is not recommended. The VLAN cannot be duplicated in different RSPAN sessions.

- 5. Select the monitored packet source port(s), you can select either Tx source port(s) or Rx source port(s), or both.
 - If Tx source port(s) is selected, the egress traffic on the port(s) will be mirrored to a designated port.
 - If the Rx source port(s) is selected, the ingress traffic on the port(s) will be mirrored to a designated port.

O Limitations

The duplication of source port(s) configured in different sessions is not allowed. The duplication of source port(s) and destination ports in different sessions is not allowed.

O Limitations


Source port(s) must be not the RSPAN VLAN member.

6. When finished, click **CREATE** to create the RSPAN session.

Configuring the intermediate switch:

✓ Note

SPAN and RSPAN share 7 sessions, SPAN uses 1 to 5, and RSPAN uses 6 and 7.

1. Enable the intermediate role for intermediate switch. RSPAN session can be created after enabling the intermediate role in the switch.

O Limitations

The switch is not allowed to be the intermediate switch and source switch or destination switch at the same time.

If you enable the RSPAN intermediate role in your switch, the RSPAN session will be cleared.

2. Select RSPAN VLAN. The RSPAN VLAN must be the same for the traffic mirrored from source switch, intermediate switch to destination switch.

O Limitations

Using the management VLAN or VLAN assignment-configured for RSPAN is not recommended. The VLAN cannot be duplicated in different RSPAN sessions.

3. When finished, click **APPLY** for the RSPAN intermediate role.

Configuring the destination switch:

- 1. Select Session ID from drop-down list (6 and 7); the session can be different for the traffic mirrored from source switch, intermediate switch to destination switch.
- 2. Select Destination as RSPAN Type

The RSPAN type cannot be duplicated in different RSPAN sessions, for example, the switch cannot be the destination switch in session 6 and the destination switch in session 7.

3. Select RSPAN VLAN. The RSPAN VLAN must be the same for the traffic mirrored from source switch, intermediate switch to destination switch.

O Limitations

Using the management VLAN or VLAN assignment-configured for RSPAN is not recommended. The VLAN cannot be duplicated in different RSPAN sessions.

4. Select the destination port(s) and click **CREATE** to create the RSPAN session.

Scenario: The destination port(s) is not only in destination switch

Configuring the source switch:

- 1. Select Session ID from drop-down list (6 and 7). The session can be different between source switch, intermediate switch and destination switch for the same mirroring traffic.
- 2. Enable Reflect Port Mode
- 3. Select Source as RSPAN Type

O Limitations

The RSPAN type cannot be duplicated in different RSPAN sessions, for example, the switch cannot be the source switch in session 6 and the source switch in session 7.

4. Select RSPAN VLAN. The RSPAN VLAN must be the same between source switch, intermediate switch to destination switch for the same mirroring traffic.

O Limitations

Using the management VLAN or VLAN assignment-configured for RSPAN is not recommended. The VLAN cannot be duplicated in different RSPAN sessions.

5. Select the monitored packet source port(s), you can select either Tx source port(s) or Rx source port(s), or both.

- a. If Tx source port(s) is selected, the egress traffic on the port(s) will be mirrored to the reflect port.
- b. If the Rx source port(s) is selected, the ingress traffic on the port(s) will be mirrored to the reflect port.

The duplication of source port(s) configured in different sessions is not allowed. The duplication of source port(s) and destination port(s) in different sessions is not allowed.

O Limitations

Avoid selecting source ports that are in the RSPAN VLAN.

6. Select the reflect port.

O Limitations

The port is reserved for reflect traffic to designated ports use, please do not configure for other use.

- 7. When finished, click **CREATE** to create the RSPAN session.
- 8. Go to the VLAN page, configure the ports required to receive the packets from source ports as the member port of RSPAN VLAN.

Configuring the intermediate switch:

1. Enable the intermediate role for intermediate switch. RSPAN session can be created after enabling the intermediate role in the switch.

O Limitations

The switch is not allowed to be the intermediate switch and source switch or destination switch at the same time.

If you enable the RSPAN intermediate role in your switch, the RSPAN session will be cleared.

2. Select RSPAN VLAN. The RSPAN VLAN must be the same for the traffic mirrored from source switch, intermediate switch to destination switch.

Using the management VLAN or VLAN assignment-configured for RSPAN is not recommended. The VLAN cannot be duplicated in different RSPAN sessions.

- 3. When finished, click **APPLY** for the RSPAN intermediate role.
- 4. Go to the VLAN page, configure the ports required to receive the packets from source ports as the member port of RSPAN VLAN.

Configuring the destination switch:

- 1. Select Session ID from drop-down list (6 and 7); the session can be different for the traffic mirrored from source switch, intermediate switch to destination switch.
- 2. Select Destination as RSPAN Type

O Limitations

The RSPAN type cannot be duplicated in different RSPAN sessions, for example, the switch cannot be the destination switch in session 6 and the destination switch in session 7.

3. Select RSPAN VLAN. The RSPAN VLAN must be the same for the traffic mirrored from source switch, intermediate switch to destination switch.

O Limitations

Using the management VLAN or VLAN assignment-configured for RSPAN is not recommended. The VLAN cannot be duplicated in different RSPAN sessions.

4. Select the destination port(s) and click **CREATE** to create the RSPAN session.

Results: If the settings are applicable, the destination port(s) will received the traffic copied from the source port(s) you specified.

Port Mirroring

Menu Path: Diagnostics > Tools > Port Mirroring

This page lets you configure port mirroring for your device.

This page includes these tabs:

- General
- SPAN

• RSPAN

Port Mirroring - General

Menu Path: Diagnostics > Tools > Port Mirroring - General

This page lets you enable or disable port mirroring for your device.

UI Setting	Description	Valid Range	Default Value
Port Mirroring	Enable or disable port mirroring to facilitate the creation of SPAN or RSPAN sessions.	Enabled / Disabled	Enabled

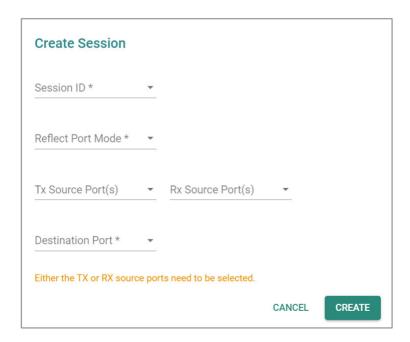
SPAN

Menu Path: Diagnostics > Tools > Port Mirroring - SPAN

This page lets you view and configure your device's SPAN settings.

O Limitations

You can create up to 5 SPAN entries.


UI Setting	Description
Session ID	Shows the session ID the entry is for.
	✓ Note SPAN and RSPAN share 7 sessions, SPAN uses 1 to 5, and RSPAN uses 6 and 7.
Reflect Port Mode	Shows whether Reflect Port Mode is enabled.
Tx Source Port(s)	Shows the Tx source ports for the session.
Rx Source Port(s)	Shows the Rx source ports for the session.
Destination Port	Shows the destination port for the session.
Reflect Port	Shows the reflect port for the session.

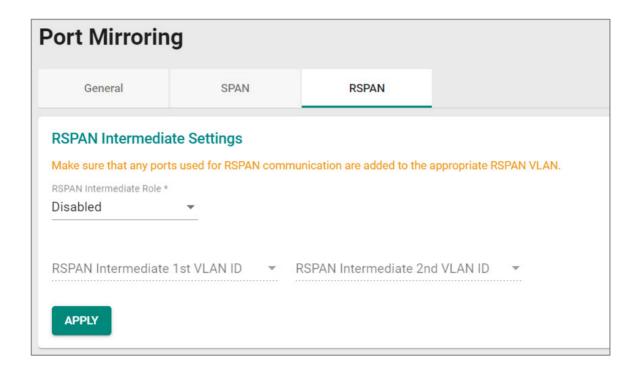
Creating a SPAN Session

Menu Path: Diagnostics > Tools > Port Mirroring - SPAN

Clicking the **Add (** icon on the **Diagnosis** > **Port Mirroring - SPAN** page will open this dialog box. This dialog lets you to create, edit or delete SPAN sessions.

Click **CREATE** to save your changes and add the new session.

UI Setting	Description	Valid Range	Default Value
Session ID	Select the session ID to use for the session. Note SPAN and RSPAN share 7 sessions, SPAN uses 1 to 5, and RSPAN uses 6 and 7.	1 to 5	N/A
Reflect Port Mode	 Enable or disable Reflect Port Mode. Enable: You can configure a reflect port to mirror packets to multiple destination ports. Disable: Packets will be mirrored to a single destination port. 	Enable / Disable	N/A
Tx Source Port	Specify a port to monitor data packets being sent through it. Note Avoid selecting source ports that are in the same VLAN as the reflect port.	Drop-down list of ports	N/A
Rx Source Port	Specify a port to monitor data packets being received through it. Note Avoid selecting source ports that are in the same VLAN as the reflect port.	Drop-down list of ports	N/A
Reflect Port	Specify this port as the reflect port for Reflect Port Mode to mirror packets to multiple destination ports. Note This port will be specifically reserved for reflect port use, please do not configure it for other uses. Note Avoid selecting reflect ports that are in the management VLAN.	Drop-down list of ports	N/A
Destination Port	Specify the destination port to use for the session.	Drop-down list of ports	N/A


RSPAN

Menu Path: Diagnostics > Tools > Port Mirroring - RSPAN

This page lets you to view and configure your device's RSPAN settings.

O Limitations You can create up to 2 RSPAN entries.

RSPAN Intermediate Settings

UI Setting	Description	Valid Range	Default Value
RSPAN Intermediate Role	Enable this if the device is in an intermediate role. Disable this if the device is in a source or destination role.	Enabled / Disabled	Disabled

UI Setting	Description	Valid Range	Default Value
RSPAN Intermediate 1st/2nd VLAN ID	Specify the VLAN ID to use as the RSPAN intermediate VLAN ID.	Drop-down list of VLAN IDs	N/A
	✓ Note The management VLAN ID cannot be used as an RSPAN intermediate VLAN ID.		

RSPAN Session List


UI Setting	Description
Session ID	Shows the session ID the entry is for.
	✓ Note SPAN and RSPAN share 7 sessions, SPAN uses 1 to 5, and RSPAN uses 6 and 7.
Reflect Port Mode	Shows whether Reflect Port Mode is enabled for the session.
RSPAN Type	Shows Source if the device role is an RSPAN source switch. Shows Destination if the device role is an RSPAN destination switch.
RSPAN VLAN ID	Shows the VLAN ID used for the RSPAN.
Tx Source Port	Shows the ports being monitored for Tx packets being sent out.
Rx Source Port	Shows the ports being monitored for Rx packets coming in.
Designated Port	Shows the port set as the designated port.
Reflect Port	Shows the port set as the Reflect Port for Reflect Port Mode to mirror packets to the designated ports.

Creating an RSPAN Session

Menu Path: Diagnostics > Tools > Port Mirroring - RSPAN

Clicking the **Add** () icon on the **Diagnostics** > **Tools** > **Port Mirroring** - **RSPAN** page will open this dialog box. This dialog lets you to create, edit or delete RSPAN sessions.

Click **CREATE** to save your changes and add the new session.

UI Setting	Description	Valid Range	Default Value
Session ID	Select the session ID to use for the session. Note SPAN and RSPAN share 7 sessions, SPAN uses 1 to 5, and RSPAN uses 6 and 7.	6 / 7	N/A

UI Setting	Description	Valid Range	Default Value
Reflect Port Mode	 Enable: You can configure a reflect port to mirror packets to destination port(s) in source switch. Disable: Packets will be only mirrored to designated port. 	Enabled / Disabled	N/A
RSPAN Type	 Select the RSPAN type to use for the session. Source: The device will act as an RSPAN source switch. Destination: The device will act as an RSPAN destination switch. 	Source / Destination	N/A
RSPAN VLAN ID	Select the VLAN ID to use as the RSPAN VLAN ID. Only existing VLAN IDs can be selected. Note Using the management VLAN or VLAN assignment-configured for RSPAN is not recommended.	Drop-down list of VLAN IDs	N/A
Tx Source Port	Select the ports you want to monitor for Tx packets being sent out. Note Avoid selecting source ports that are in the RSPAN VLAN.	Drop-down list of ports	N/A
Rx Source Port	Select the ports you want to monitor for Rx packets coming in. Note Avoid selecting source ports that are in the RSPAN VLAN.	Drop-down list of ports	N/A
Designated Port	Select the port to use as the designated port.	Drop-down list of ports	N/A
Reflect Port	Select the port to use as the reflect port for Reflect Port Mode to mirror packets to multiple designated ports. Note This port is specifically reserved for reflect port use, please do not configure it for other use.	Drop-down list of ports	N/A

Ping

Ping lets you use the ping command through the device for a simple, but powerful tool for troubleshooting network problems. The unique feature of this is that even though the ping command is entered in your browser window, the actual ping command will be sent from the Moxa device itself.

Ping

Menu Path: Diagnostics > Tools > Ping

This page lets you use the ping function, which is useful for troubleshooting network problems.

UI Setting	Description	Valid Range	Default Value
IP Address/Domain Name	Specify the IP address or domain name you want to ping, then click the PING button. The ping result will be displayed below.	Valid IP address or domain name up to 50 characters	N/A

Event Logs and Notifications

Menu Path: Diagnostics > Event Logs and Notifications

This section lets you set up and view your device's event logs and notifications.

This section includes these pages:

- Event Logs
- Event Notifications

- Syslog
- SNMP Trap/Inform
- Email Settings

Event Logs

An Ethernet switch's "Event logs" feature is like a digital diary for the switch. It automatically records important events that happen on the network connected to the switch. It is useful when troubleshotting network issues.

These events can include:

- Changes in connection status: This could be a cable being plugged in or unplugged, a device joining or leaving the network, or a port going up or down.
- **Errors:** The switch might detect issues like data corruption, excessive traffic, or problems with specific ports.
- **Security events:** Some switches can log attempts to access the switch itself or suspicious activity on the network.

Event Logs

Menu Path: Diagnostics > Event Logs and Notifications > Event Logs

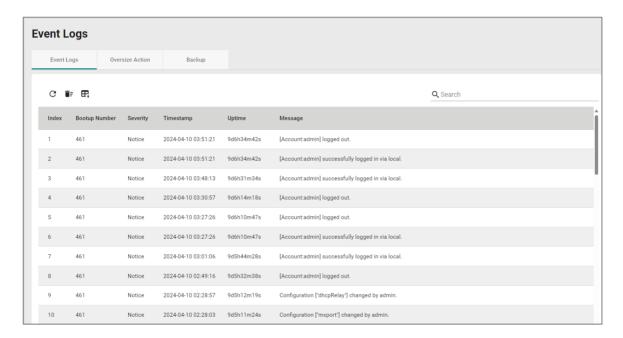
This page lets you browse and export your device's various event logs.

This page includes these tabs:

- Event Logs
- Oversize Action
- Backup

Event Logs - Event Logs

Menu Path: Diagnostics > Event Logs and Notifications > Event Logs - Event Logs

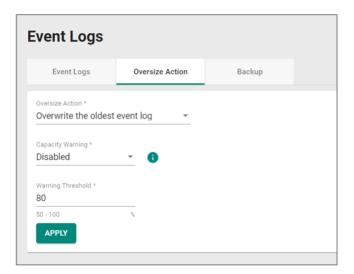

This page lets you view your device's event logs.

O Limitations

The system log can record up to 10000 events.

Actions

- Click the **Refresh icon** ($^{\mathbb{C}}$) to refresh the logs.
- Click the Clear System Log icon () to delete all logs.
- Click the **Export icon (**) to export all logs to a file.


UI Setting	Description
Index	Shows the index of the event.
Bootup Number	Shows the total number of times the device has been powered on. The number increases by 1 every time the device is powered on.
Severity	Shows the severity categorization of the event.
Timestamp	Shows the time of the event, including the date, time, and UTC time zone adjustment.
Uptime	Shows the uptime of the device after it is powered on.
Message	Shows additional information about the event, based on the type of event. The username of the account will also be recorded for the following events: Login Success, Login Fail , User Logout .

Event Logs - Oversize Action

Menu Path: Diagnostics > Event Logs and Notifications > Event Logs - Oversize Action

This page lets you configure the system's oversize action when the event log reaches its maximum number of entries.

Oversize Action

UI Setting	Description	Valid Range	Default Value
Oversize Action	Select the action to take when the event log reaches its maximum number of entries. • Overwrite the oldest event log: New events will overwrite the oldest events. • Stop recording event log: No new events	Overwrite the oldest event log / Stop recording event log	Overwrite the oldest event log
	will be recorded. This will also disable port monitoring.		
Capacity Warning	Enable or disable capacity warnings.	Enabled / Disabled	Disabled
Warning Threshold	Set the warning threshold as a percentage. When Capacity Warning is enabled, a warning event log will be triggered when the event log reaches this threshold.	50% to 100%	80%

Event Logs - Backup

Menu Path: Diagnostics > Event Logs and Notifications > Event Logs - Backup

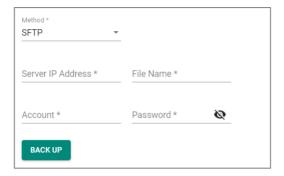
This page lets you back up the event logs through various methods.

Event Logs - Backup Settings - Local


If **Method** is set to **Local**, these settings will appear. Click **BACK UP** to save the event logs to your local computer.

UI Setting	Description	Valid Range	Default Value
Method	Select a method for backing up event logs.	Local / TFTP / SFTP / USB	Local

Event Logs - Backup Settings - TFTP


If **Method** is set to **TFTP**, these settings will appear. Click **BACK UP** to save the event log to the specified TFTP server.

UI Setting	Description	Valid Range	Default Value
Method	Select a method for backing up event logs.	Local / TFTP / SFTP / USB	Local
Server IP Address	Specify the IP address of the TFTP server to upload the event logs to.	Valid IP address	N/A
File Name	Specify a file name to use for the event logs file.	File name can only contain A-Z, a-z, 0-9 or the symbols().	N/A

Event Logs - Backup Settings - SFTP

If **Method** is set to **SFTP**, these settings will appear. Click **BACK UP** to save the event log to the specified SFTP server.

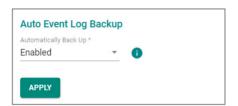
UI Setting	Description	Valid Range	Default Value
Method	Select a method for backing up event logs.	Local / TFTP / SFTP / USB	Local
Server IP Address	Specify the IP address of the SFTP server to upload the event logs to.	Valid IP address	N/A
File Name	Specify a file name to use for the event logs file.	File name can only contain A-Z, a-z, 0-9 or the symbols().	N/A
Account	Enter the SFTP server account name to use to connect to the SFTP server.	N/A	N/A
Password	Enter the SFTP server account password to use to connect to the SFTP server.	N/A	N/A

Event Logs - Backup Settings - USB

If **Method** is set to **USB**, these settings will appear. Click **BACK UP** to save the event log to an ABC-02 configuration tool connected to your device's USB port.

✓ Note

To use this feature, USB Function must be enabled in System > Management Interface > Hardware Interface.


UI Setting	Description	Valid Range	Default Value
Method	Select a method for backing up event logs.	Local / TFTP / SFTP / USB	Local

Auto Event Log Backup

When **Automatically Back Up** is enabled, when the event log is full, the earliest 1000 event logs will be backed up to an inserted ABC-02 configuration tool and then deleted from the device.

To use this feature, USB Function must be enabled in System > Management Interface > Hardware Interface.

UI Setting	Description	Valid Range	Default Value
Automatically Back Up	Enable or disable automatic backup of your event logs.	Enabled / Disabled	Enabled

Event Notifications

Event Notifications act like an alert system for the network. It allows you to be proactively notified when important events occur on the device or for other network devices connected to it.

Event Notifications

Menu Path: Diagnostics > Event Logs and Notifications > Event Notifications

This page lets you configure notifications for various kinds of events.

This page includes these tabs:

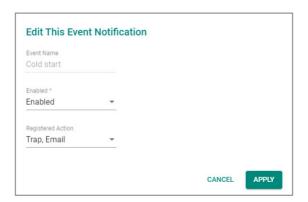
- System and Functions
- Port

Event Notifications - System and Functions

Menu Path: Diagnostics > Event Logs and Notifications > Event Notifications - System and Functions

This page lets you configure notification settings for various system events related to the overall functions of the device. Each event can be configured independently with different warning methods and severity classifications.

Event Notifications List

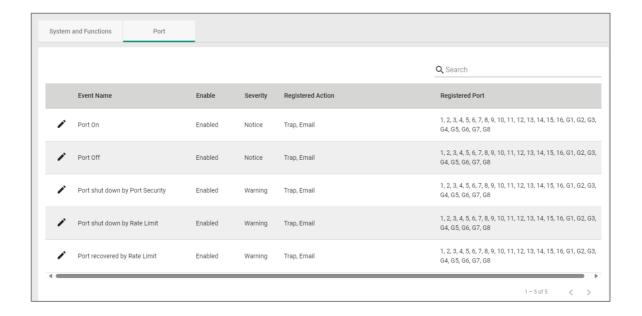

UI Setting	Description
Group	Shows which group this event belongs to.
Event Name	Shows the name of the event. Refer to <u>Event Log Descriptions</u> for more details.
Enabled	Shows whether event notifications are enabled for this kind of event.
Severity	Shows the severity assigned to the event. Refer to the <u>Severity Level List</u> for more details.
Shows which action will be taken for this kind of event. Trap: A notification is sent to the Trap server when the event is triggered. Email: A notification is sent to the email server defined in the Email Setting Relay: A notification is sent through the relay interface, if the device has or event is triggered. Note	
	The types of actions available may vary depending on the event type and the device model.

Editing an Event Notification

Menu Path: Diagnostics > Event Logs and Notifications > Event Notifications - System and Functions

Clicking the **Edit** () icon for an entry on the **Diagnostics** > **Event Logs and Notifications** > **Event Notifications** - **System and Functions** page will open this dialog box. This dialog lets you change the notification settings for the selected event.

Click **APPLY** to save your changes.

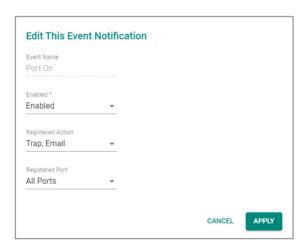

UI Setting	Description	Valid Range	Default Value
Event Name (View-only)	Shows the name of the event. Refer to Event Log Descriptions for more information.	(Fixed)	(Fixed)
Enabled	Enable or disable notifications for this event.	Enabled / Disabled	Enabled
Registered Action	Select which actions to take when the event occurs. Multiple actions may be selected.	Trap / Email / Relay	Trap, Email
	 Trap: A notification will be sent to the Trap server. 		
	• Email : A notification email will be sent to the email server defined in the <u>Email Settings</u> section.		

Event Notifications - Port

Menu Path: Diagnostics > Event Logs and Notifications > Event Notifications - Port

This page lets you configure notification settings for various events related to your device's physical ports. Each port can be configured independently with different warning methods and severity classifications.

When a port event is triggered, the FAULT LED on your device will also light up if your device has one.


UI Setting	Description
Event Name	Shows the name of the port event.
Enable	Shows whether event notifications are enabled for this kind of event.
Severity	Shows the severity assigned to the event. Refer to the <u>Severity Level List</u> for more details.
Registered Action	Shows which action will be taken for this kind of event. Trap : A notification is sent to the Trap server when the event is triggered. Email : A notification is sent to the email server defined in the <u>Email Settings</u> section. Syslog : An event log is recorded to the Syslog server defined in the <u>Syslog</u> section.
Registered Port	Shows the ports that use the registered action.

Editing a Port Event Notification

Menu Path: Diagnostics > Event Logs and Notifications > Event Notifications - Port

Clicking the **Edit** () icon for a port on the **Diagnostics** > **Event Logs and Notifications** > **Event Notifications** - **Port** page will open this dialog box. This dialog lets you change the notification settings for the selected port.

Click **APPLY** to save your changes.

UI Setting	Description	Valid Range	Default Value
Event Name (View-only)	Shows the name of the port event.	(Fixed)	(Fixed)
Enabled	Enable or disable notifications for this event.	Enabled / Disabled	Enabled
Registered Action	 Select which actions to take when the event occurs. Multiple actions may be selected. Trap: A notification will be sent to the Trap server. Email: A notification email will be sent to the email server defined in the Email Settings section. 	Trap / Email / Relay	Trap, Email
Registered Port	Specify the ports that will use the registered action.	Drop-down list of ports	All Ports

Syslog

Syslog allows you to centralize event logs on a dedicated server. This provides a more comprehensive record of network activity compared to the limited storage on an individual device, aiding in troubleshooting and security analysis.

When an event occurs, an event notification can be sent as a syslog UDP packet to specified syslog servers. Each syslog server can be enabled individually.

Administrators can manually import self-signed certificates for syslog client services. However, they should check the root certificate and validity of the signature before importing, according to the organization's security procedures and requirements. After importing a certificate, the administrator should check if the certificate has been revoked and if so, the certificate must be replaced. When the device sends an imported certificate to the syslog server, the syslog server will attempt to verify the certificate against the approved certificate pool on the server.

Syslog

Menu Path: Diagnostics > Event Logs and Notifications > Syslog

This page lets you manage your device's Syslog.

This page includes these tabs:

General

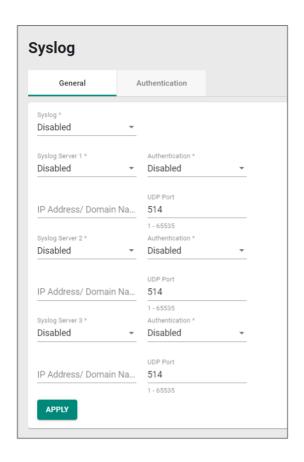
Authentication

✓ Note

In order to ensure the security of your network, we recommend the following:

- The encryption algorithm of keys should be selected based on internationally recognized and proven security practices and recommendations.
- The lifetime of certificates generated for syslog client services should be short and in accordance with the organization's security procedures and requirements.
- For security reasons, it is recommended to send event logs to a centralized syslog server for continuous network event monitoring.

Syslog - General

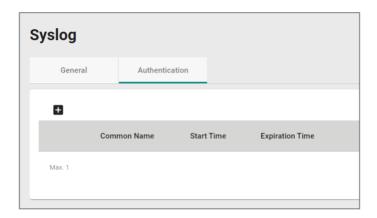

Menu Path: Diagnostics > Event Logs and Notifications > Syslog - General

This page lets you configure the Syslog server settings.

Syslog Settings

✓ Note

If the syslog server cannot receive previous logs, it is possible that the receiving port of the syslog server is not ready. We suggest you enable the Linkup Delay function to delay the log delivery time.

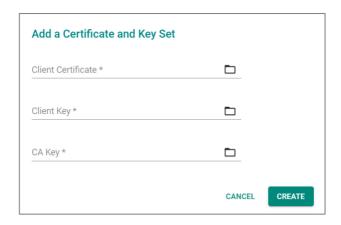

UI Setting	Description	Valid Range	Default Value
Syslog	Enable or disable the syslog logging for your device.	Enabled / Disabled	Disabled
Syslog Server 1/2/3	Enable or disable the specified syslog server.	Enabled / Disabled	Disabled
Authentication	Select whether to authenticate via TLS or disable authentication.	Disabled / TLS	Disabled
	✓ Note To enable TLS, a certificate and key set must be created first on the "Authentication" tab.		
IP Address/ Domain Name	Enter the IP address or domain name of the related syslog server.	Valid IP address or domain name	N/A
UDP Port	Specify the UDP port of the related syslog server.	1 to 65535	514

Syslog - Authentication

Menu Path: Diagnostics > Event Logs and Notifications > Syslog - Authentication

This page lets you manually import self-signed certificates for syslog client services.

Syslog Certificate List


UI Setting	Description
Common Name	Shows the name of the imported certificate and keys.
Start Time	Shows the start time of the imported certificate and keys.
Expiration Time	Shows the expiration time of the imported certificate and keys.

Adding a Syslog Certificate and Key Set

Menu Path: Diagnostics > Event Logs and Notifications > Syslog - Authentication

This page lets you add a client certificate and key for Syslog authentication.

Click **CREATE** to save your changes.

UI Setting	Description	Valid Range	Default Value
Client Certificate	Click the folder \Box icon and select a client certificate file from your computer to import.	N/A	N/A
Client Key	Click the folder computer to import.	N/A	N/A
CA Key	Click the folder con and select a CA certificate file from your computer to import.	N/A	N/A

SNMP Trap/Inform

SNMP Trap allows an SNMP agent to notify the NMS of a significant event.

Your device supports two SNMP modes: **Trap** mode and **Inform** mode.

SNMP Trap/Inform allows your switch to actively send real-time notifications about critical events to network management systems. This proactive alerting can help identify and address network issues faster, improving overall network health and uptime.

SNMP Trap/Inform

Menu Path: Diagnostics > Event Logs and Notifications > SNMP Trap/Inform

This page lets you configure the SNMP Trap/Inform notification feature.

This page includes these tabs:

- General
- SNMP Trap/Inform Accounts

SNMP Trap/Inform - General

Menu Path: Diagnostics > Event Logs and Notifications > SNMP Trap/Inform - General

This page lets you configure the SNMP Trap/Inform settings of your device.

Click **APPLY** to save your changes.

SNMP Trap/Inform Recipients

UI Setting	Description
Recipient IP Address/ Domain Name	Shows the IP address or the name of the recipient trap server that will receive notifications.
Mode	Shows the mode used for SNMP notifications.
Trap Community	Shows the community string used for authentication.

Creating an SNMP Trap/Inform Host

Menu Path: Diagnostics > Event Logs and Notifications > SNMP Trap/Inform - General

Clicking the Add () icon on the Diagnostics > Event Logs and Notifications > SNMP Trap/Inform - General page will open this dialog box. This dialog lets you add an SNMP Trap/Inform server.

Click **CREATE** to save your changes and add the new server.

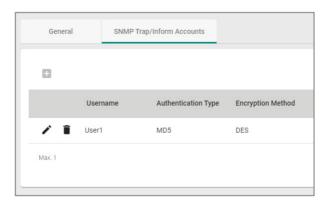
UI Setting	Description	Valid Range	Default Value
Recipient IP Address/ Domain Name	Specify the IP address or the name of the recipient trap server that will receive notifications.	Valid IP address or domain name, 0 to 32 characters	N/A
Mode	Select a mode to use for SNMP notifications. Trap notifications are sent without requesting an acknowledgement from the recipient. Inform notifications will request an acknowledgement from the recipient, and will retry sending the notification if the acknowledgement is not received.	Trap V1 / Trap V2 / Inform V2 / Trap V3 / Inform V3	N/A
	Trap V1: Use Trap V1 for SNMP notifications.		
	Trap V2c: Use Trap V2 for SNMP notifications.		
	Inform V2c: Use Inform V2 for SNMP notifications.		
	Trap V3: Use Trap V3 for SNMP notifications.		
	Inform V3: Use Inform V3 for SNMP notifications.		
Trap Community	Specify the community string that will be used for authentication.	4 to 32 characters	N/A

SNMP Inform Settings

Note

These settings only apply to SNMP Trap/Inform entries that have Trap Mode set to Inform V2c or Inform V3.

UI Setting	Description	Valid Range	Default Value
Inform Retries	Specify the number of times to retry sending an inform notification.	1 to 99	3
Inform Timeout	Specify the amount of time in seconds to wait to wait for an acknowledgement before trying to resend an inform notification.	1 to 300	10


SNMP Trap/Inform Accounts

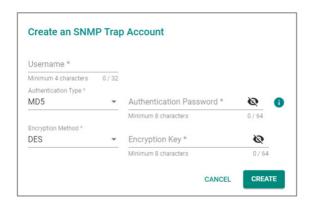
Menu Path: Diagnostics > Event Logs and Notifications > SNMP Trap/Inform - SNMP Trap/Inform Accounts

This page lets you configure an SNMP trap account for your device.

O Limitations

You can configure up to 1 SNMP trap account.

UI Setting	Description
Username	Shows the username for the SNMP trap account.


UI Setting	Description
Authentication Type	Shows which authentication method is used for the account.
Encryption Method	Shows which encryption method is used for the account.

Creating an SNMP Trap Account

Menu Path: Diagnostics > Event Logs and Notifications > SNMP Trap/Inform - SNMP Trap/Inform Accounts

Clicking the Add () icon on the Diagnostics > Event Logs and Notifications > SNMP Trap/Inform - SNMP Trap/Inform Accounts page will open this dialog box. This dialog lets you add an SNMP trap account for your device.

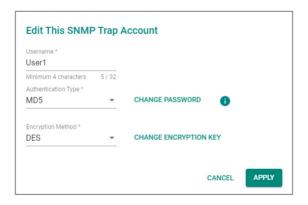
Click **CREATE** to save your changes and add the new account.

UI Setting	Description	Valid Range	Default Value
Username	Specify a username for the SNMP Trap account.	4 to 32 characters	N/A
Authentication Type	Select which authentication method to use for the account.	None / MD5 / SHA / SHA-256 / SHA-512	None
Authentication Key (if Authentication Type is MD5 or SHA)	Specify an authentication key to use for the account.	8 to 64 characters	N/A
Encryption Method	Disable encryption or select which encryption method to use for the account.	Disabled / DES / AES	Disabled

UI Setting	Description	Valid Range	Default Value
Encryption Key (if Encryption Method is DES or AES)	Specify an encryption password for the account.	8 to 64 characters	N/A

Deleting an SNMP Trap Account

Menu Path: Diagnostics > Event Logs and Notifications > SNMP Trap/Inform - SNMP Trap/Inform Accounts


You can delete an account by clicking its **Delete** () icon.

Editing an SNMP Trap Account

Menu Path: Diagnostics > Event Logs and Notifications > SNMP Trap/Inform - SNMP Trap/Inform Accounts

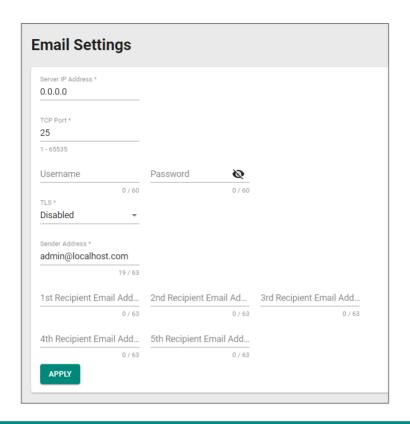
Clicking the **Edit** () icon for an account on the **Diagnostics** > **Event Logs and Notifications** > **SNMP Trap/Inform - SNMP Trap/Inform Accounts** page will open this dialog box. This dialog lets you edit the account's settings.

Click **APPLY** to save your changes.

UI Setting	Description	Valid Range	Default Value
Username	Specify a username for the SNMP Trap account.	4 to 32 characters	N/A

UI Setting	Description	Valid Range	Default Value
Authentication Type	Select which authentication method to use for the account.	None / MD5 / SHA / SHA-256 / SHA-512	None
	Click CHANGE PASSWORD to specify a new authentication password for the account.		
Encryption Method	Disable encryption or select which encryption method to use for the account.	Disabled / DES / AES	Disabled
	Click CHANGE ENCRYPTION KEY to specify a new encryption key for the account.		

Email Settings


Email Settings lets you configure email notifications for important events. This lets you receive alerts directly in your inbox, providing a convenient way to stay informed about critical network issues.

Email Settings

Menu Path: Diagnostics > Event Logs and Notifications > Email Settings

This page lets you configure your device's email notification settings. You can specify which mail server and account to use, and which email addresses to send email notifications to.

Click **APPLY** to save your changes.

UI Setting	Description	Valid Range	Default Value
Server IP Address	Specify the IP address of the email server.	Valid IP address	N/A
TCP Port	Specify the TCP port of the email server.	1 to 65535	25
Username	Specify the username used to log in to the email server.	0 to 60 characters	N/A
Password	Specify the password used to log in to the email server.	0 to 60 characters	N/A
TLS	Enable or disable TLS (Transport Layer Security).	Enabled / Disabled	Disabled
Sender Address	Specify the sender email address to use for email notifications.	1 to 63 characters	N/A
1st/2nd/3rd/4th/5th Recipient Email Address	Enter an email address to send email notifications to. You can set up to 5 email addresses to send email notifications to.	0 to 63 characters	N/A

Chapter 4

Appendix Topics

Account Privileges List

This page shows the privilege levels granted to the different authority levels: Admin, Supervisor, and User on Moxa's Managed Ethernet Series switches. Refer to System > Account Management > User Accounts for more information on user accounts.

Privileges are indicated as follows:

- R/W: Read and write access granted for the relevant settings. Please note that R stands for Read and W stands for Write.
- R: Read-only access granted for the relevant settings
- -: No access granted for the relevant settings

✓ Note

Available settings and options will vary depending on the product model.

System

Settings	Admin	Supervisor	User
System Management			
Information Settings	R/W	R/W	R
Firmware Upgrade	Execute	-	-
Configuration Backup and Restore	Execute	-	-
Account Management			
User Accounts	R/W	-	-
Online Accounts	R/W	-	-
Password Policy	R/W	-	-
Management Interface			
User Interface	R/W	R	R

Settings	Admin	Supervisor	User
Hardware Interfaces	R/W	R/W	R
SNMP	R/W	R	R
RMON1 (CLI only)	R/W	R/W	R
Time			
System Time	R/W	R/W	R
NTP Server	R/W	R/W	-

Port

Settings	Admin	Supervisor	User
Port Interface			
Port Settings	R/W	R/W	R
Linkup Delay	R/W	R/W	R
Link Aggregation (Port Channel)	R/W	R/W	R
РоЕ	R/W	R/W	R

Layer 2 Switching

Settings	Admin	Supervisor	User
VLAN	R/W	R/W	R
GARP	R/W	R/W	R
MAC			
Static Unicast	R/W	R/W	R

Settings	Admin	Supervisor	User
MAC Address Table	R/W	R/W	R
QoS			
Classification	R/W	R/W	R
Ingress Rate Limit	R/W	R/W	R
Scheduler	R/W	R/W	R
Egress Shaper	R/W	R/W	R
Multicast			
IGMP Snooping	R/W	R/W	R
GMRP	R/W	R/W	R
Static Multicast	R/W	R/W	R

IP Configuration

Settings	Admin	Supervisor	User
IP Configuration	R/W	R/W	R

Redundancy

Layer 2 Redundancy

Settings	Admin	Supervisor	User
Spanning Tree	R/W	R/W	R
Turbo Ring v2	R/W	R/W	R
MRP	R/W	R/W	R

Network Service

Settings	Admin	Supervisor	User
DHCP Server	R/W	R/W	R
DHCP Relay Agent	R/W	R/W	R
DNS Server	R/W	R/W	R

Security

Settings	Admin	Supervisor	User
Device Security			
Login Policy	R/W	R	R
Trusted Access	R/W	R	R
SSH & SSL	Execute	Execute	-
Network Security			
IEEE 802.1X	R/W	R/W	R
MAC Authentication Bypass	R/W	R/W	R
Port Security	R/W	R/W	R
Traffic Storm Control	R/W	R/W	R
Access Control List	R/W	R/W	R
Network Loop Protection	R/W	R/W	R
Binding Database	R/W	R/W	R
DHCP Snooping	R/W	R/W	R
IP Source Guard	R/W	R/W	R

Settings	Admin	Supervisor	User
Dynamic ARP Inspection	R/W	R/W	R
Authentication			
Login Authentication	R/W	-	-
RADIUS	R/W	-	-
TACACS+	R/W	-	-

Diagnostics

Settings	Admin	Supervisor	User
System Status			
Resource Utilization	R	R	R
Network Status			
Network Statistics	R	R	R
LLDP	R/W	R/W	R
Tools			
Port Mirroring	R/W	R/W	R
Ping	Execute	Execute	Execute
Event Logs and Notifications			
Event Logs	R/W	R/W	R
Event Notifications	R/W	R/W	R
Syslog	R/W	R	R
SNMP Trap/Inform	R/W	-	-
Email Settings	R/W	R/W	R

Settings	Admin	Supervisor	User
Maintenance and Tool			
Change Mode: Standard/Advance Mode	Execute	Execute	Execute
Disable Auto Save	R/W	R/W	-
Locator	R/W	R/W	Execute
Reboot	Execute	Execute	-
Reset to Default Settings	R/W	-	-
Save Custom Default	Execute	-	-
Log Out	R/W	R/W	R/W

Configuration Types

This table describes the different types of configurations that your device uses.

Configuration Type	Description		
Startup Config	The configuration that is loaded when the device boots up. These settings persist even when the device is powered off.		
Running Config	The configuration that is currently in use by the device.		
	 If auto-save is enabled, all changes will be saved to the startup config, and will be retained when the device powers off. 		
	 If auto-save is disabled, any unsaved changes will be lost when the device powers off. 		
	Refer to <u>Disable/Enable Auto Save</u> for more information.		
Factory Default Config	The pre-defined factory default configuration of your device. This configuration cannot be changed.		
Custom Default Config	 A user-defined default configuration saved on the device. Users can define a custom default configuration by saving the current startup configuration as a custom default. Refer to Save Custom Default for more information. 		

Event Log Descriptions

This appendix describes the different events that can be recorded in the event log files.

Event name	Severity	Event Description
802.1X auth fail	Warning	802.1x authentication failed on port {{index}}/{{number}} with {{buffer}}
Account settings changed	Notice	Account settings of [Account: {{user_name}}] has been updated. Account settings of [Account: {{user_name}}] has been deleted. Account settings of [Account: {{user_name}}] has been created.
Auto Config (Disable)	Notice	Auto Configuration is disabled
Auto Config (Download Config)	Notice	Downloaded the configuration
Auto Config (Fail_Download)	Warning	Failed to download the configuration
Auto Config (Fail_Import)	Warning	Failed to import the configuration
Auto Config (Fail_Propagate)	Warning	Insufficient information to propagate
Auto Config (Fail_Timeout)	Warning	Auto Configuration timed out
Auto Config (Got IP)	Notice	Received IP address
Auto Config (Propagate)	Notice	Propagating information to the DHCP Server
Auto Config (Start)	Notice	Auto Configuration process started
Auto Config (Warn_Need_Reboot)	Notice	Auto Configuration will be triggered after the reboot
Cold start	Critical	System has performed a cold start
Configuration changed	Notice	Configuration {{modules}} changed by {{username}}.
Configuration imported	Notice	Configuration import ${\{\text{successful /failed}\}}$ by ${\{\text{username}\}\}$ via ${\{\text{method}\}\}}$.
Coupling changed	Warning	Turbo Ring v2 coupling path status has changed.

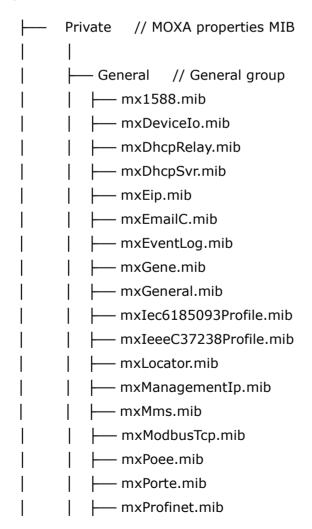
Event name	Severity	Event Description
DHCP Bootfile Failed	Notice	The TFTP server name is not a valid IPv4 address or domain name. The bootfile name is invalid. The TFTP request has timed out.
DHCP client ingress discards packets due to the DHCP Snooping rule	Warning	VLAN <vlan-id> dropped DHCP client ingress packets due to a violation of the DHCP Snooping rule. Total packets discarded: <number></number></vlan-id>
DHCP server discards packets due to the DHCP Snooping rule	Warning	VLAN <vlan-id> dropped DHCP server packets due to a violation of the DHCP Snooping rule. Total packets discarded: <number></number></vlan-id>
LLDP table changed	Info	LLDP remote table changed
Log capacity threshold	Warning	Number of event log entries $\{\{logEntryNum\}\}$ has reached the threshold.
Login failed	Warning	[Account: {{user_name}}] log in failed via {{interface}}
Login lockout	Warning	[Account: {{user_name}}] locked due to {{failed_times}} failed login attempts
Login success	Notice	[Account: {{user_name}}] successfully logged in via {{interface}}
Low input voltage	Warning	The input voltage of the power supply has dropped below 46 VDC. Please adjust the voltage to between 46 and 57 VDC to fit the PoE voltage requirement.
Master changed	Warning	Ring {{Index}} master has changed
Master mismatch	Warning	Ring {{Index}} master setting does not match
MSTP new port role	Warning	$\label{eq:mstp} \begin{tabular}{l} MSTP (MST\{\{Index\}\}) port $\{\{number\}\}$ role changed from $\{\{role\}\}$ to $\{\{role\}\}$. \end{tabular}$
MSTP root changed	Warning	MSTP (MST{{Index}}) new root has been elected in topology.
MSTP topology changed	Warning	Topology (MST{{Index}}) has been changed by MSTP.
Non-PD or PD short circuit	Warning	The connected device on Port {{number}} has been detected as a non-PD or the PD has short circuited. Please check the device status.
Over power budget limit	Warning	The consumed power {{power_value}} of all the PDs have exceeded the maximum input power {{input_power_value}}
Password changed	Notice	Password of [Account: {{user_name}}] has been changed.

Event name	Severity	Event Description	
PD no response	Error	Port {{number}} device is not responding to the PD failure check. Please check the device status.	
PD over-current	Error	Current of port $\{\{number\}\}\$ has exceeded the safety limit. Please check the device status.	
PD power off	Notice	Port {{number}} PD power off	
PD power on	Notice	Port {{number}} PD power on	
Port Off	Notice	Port {{index}}/{{number}} link down.	
Port On	Notice	Port {{index}}/{{number}} link up.	
Port recovered by Rate Limit	Warning	Port {{index}}/{{number}} has recovered by rate limit.	
Port shut down by Port Security	Warning	Port {{index}}/{{number}} has shutdown due to violation of Port Security rule.	
Port shut down by Rate Limit	Warning	Port {{index}}/{{number}}has excessive traffic and shutdown.	
Power detection failure	Warning	Port {{number}} device is {{Not present/Legacy PD/802.3 af/802.3 at/802.3 bt/NIC/Unknown}}. Please {{No suggestion/enable PoE power output/disable PoE power output/select PoE output mode to High power/select PoE output mode to Force/enable legacy PD detection/raise external power supply voltage greater than 46 VDC}}	
Power Off->On	Notice	Power {{index}} has turned off	
Power On->Off	Notice	Power {{index}} has turned on	
Redundant port health check failed	Error	Redundant port {{index}}/{{number}} health check fail.	
RMON failing alarm	Warning	{{user defined}}	
RMON raising alarm	Warning	{{user defined}}	
RSTP invalid BPDU	Warning	RSTP Port-Channel {{channel id}} received an invalid BPDU (type:{{type}}, value:{{value}}).	
		RSTP port {{index}}/{{number}} received an invalid BPDU (type:{{type}}, value:{{value}}).	
RSTP migration	Warning	Port-Channel {{channel id}} changed to {{rstp/stp}}. Port {{index}}/{{number}} changed to {{rstp/stp}}.	

Event name	Severity	Event Description
RSTP new port role	Warning	RSTP Port-Channel $\{\{\text{channel id}\}\}\$ role changed from $\{\{\text{role}\}\}\}$ to $\{\{\text{role}\}\}$.
		RSTP port ${\{index\}}/{\{number\}\}}$ role changed from $\{\{role\}\}$ to $\{\{role\}\}$.
RSTP root changed	Warning	RSTP new root has been elected in topology
RSTP topology changed	Warning	Topology has been changed by RSTP
SSL certification changed	Notice	SSL certificate has been changed SSL certificate has been regenerated
Topology Changed (MRP)	Warning	Topology change has been detected, MRP {{strMRMState}}.
Topology Changed (RSTP)	Warning	Topology has been changed by RSTP
Topology Changed (Turbo Ring)	Warning	Topology change has been detected on Ring $\{\{RingIndex\}\}\$ of Turbo Ring v2
Warm start	Notice	System has performed a warm start

SNMP MIB Files

This appendix contains the SNMP MIB file for the managed switch.


You can download the MIB file via the product site. Please note the MIB file varies by model.

The structure of the Moxa MIB group package

Moxa support standard MIB and properties MIB. Below are all of folder and related MIB files. Please note that the applicable MIB files may vary across different models.

<Package File Lists>

E.g. MOXA_MIB_XXX-XXXX_v1.0_YYYY_MMDD_HHMM.zip //XXX-XXXX means model name


```
mxPtp.mib
   mxRelayC.mib
   - mxSnmp.mib
  — mxSwe.mib
 — mxSysLoginPolicySvr.mib
mxSyslogSvr.mib
— mxSysPasswordPolicySvr.mib
mxSystemInfo.mib
 — mxSysTrustAccessSvr.mib
mxSysUtilSvr.mib
  mxTimeSetting.mib
— mxTimeZone.mib
— mxTrackinge.mib
— mxTrapC.mib
└── mxUiServiceMgmt.mib
– PoE
      // PoE group
— mxPoe.mib
└── mxPoeBt.mib
Product_Information
                      // Product group
— mxGeneralInfo.mib
└─ mxProductInfo.mib
Switching // Switching group
- mxDai.mib
— mxDhcpSnp.mib
 - mxDot1x.mib
 — mxDualHoming.mib
 — mxFiberCheck.mib
 — mxIgmpSnp.mib
 — mxIpsg.mib
 — mxLa.mib
 — mxLhc.mib
 - mxLldp.mib
 ├─ mxLp.mib
  — mxMab.mib
 — mxMacsec.mib
   mxPort.mib
```

MX-NOS Rail Version V1 - User Manual

```
mxPortMirror.mib
        — mxPsms.mib
      — mxPssp.mib
      — mxQos.mib
      — mxRadius.mib
      — mxRlps.mib
      --- mxRmon.mib
      — mxRstp.mib
      — mxStcl.mib
      — mxSwitching.mib
      — mxTc.mib
      - mxTcst.mib
      ├─ mxTrv2.mib
      └─ mxVlan.mib
   ├─ Routing // Routing group
     — mxArp.mib
     — mxIpIf.mib
     | mxMulticastRouting.mib
     — mxOspf.mib
     — mxPimSm.mib
     — mxRte.mib
     mxStaticRoute.mib
     — mxUnicastRoutingTable.mib
     └─ mxVrrp.mib

    Standard // Standard MIB

├── BRIDGE-MIB.mib
EtherLike-MIB.mib
├── IANA-ADDRESS-FAMILY-NUMBERS.mib
├── IANAifType-MIB.mib
├── IEC-62439-2.mib
├── IEEE8021-PAE-MIB.mib
├── IEEE8021-SPANNING-TREE-MIB.mib
├── IEEE8021-TC-MIB.mib
├── IEEE8023-LAG-MIB.mib
├── IEEE8023-MSTP-MIB.mib
```

├── IF-MIB.mib ├── INET-ADDRESS-MIB.mib LLDP-EXT-DOT1-MIB.mib LLDP-EXT-DOT3-MIB.mib LLDP-EXT-ODVA-MIB.mib LLDP-MIB.mib ├── P-BRIDGE-MIB.mib — Q-BRIDGE-MIB.mib RFC1213-MIB.mib RFC1271-MIB.mib ├── RMON2-MIB.mib --- RMON-MIB.mib — SNMP-FRAMEWORK-MIB.mib ├── SNMPv2-CONF.mib — SNMPv2-MIB.mib — SNMPv2-SMI.mib SNMPv2-TC.mib ├─ OSPF-MIB.mib ├── PTPBASE-MIB.mib └─ TOKEN-RING-RMON-MIB.mib └── IEEE8021-AS-MIB.mib └── IEEE8021-BRIDGE-MIB.mib └── IEEE8021-Q-BRIDGE-MIB.mib L— IEEE8021-ST-MIB.mib README.txt // this file

Standard MIBs Installation Order

If your tool need to import MIB one-by-one, please refer to the Standard MIBs Installation Order.

- 1.RFC1213-MIB.mib
- 2.SNMP-FRAMEWORK-MIB.mib
- 3.SNMPv2-SMI.mib
- 4.SNMPv2-TC.mib
- 5.SNMPv2-CONF.mib

```
6.SNMPv2-MIB.mib
```

- 7.IANAifType-MIB.mib
- 8.IEEE8023-LAG-MIB.mib
- 9.IF-MIB.mib
- 10.EtherLike-MIB.mib
- 11.IEEE8021-PAE-MIB.mib
- 12.BRIDGE-MIB.mib
- 13.P-BRIDGE-MIB.mib
- 14.RFC1271-MIB.mib
- 15.RMON-MIB.mib
- 16.TOKEN-RING-RMON-MIB.mib
- 17.RMON2-MIB.mib
- 18.Q-BRIDGE-MIB.mib
- 19.INET-ADDRESS-MIB.mib
- 20.IEEE8021-TC-MIB.mib
- 21.IEEE8021-SPANNING-TREE-MIB.mib
- 22.IEEE8021-MSTP-MIB.mib
- 23.IANA-ADDRESS-FAMILY-NUMBERS-MIB.mib
- 24.LLDP-MIB.mib
- 25.LLDP-EXT-DOT1-MIB.mib
- 26.LLDP-EXT-DOT3-MIB.mib
- 27.LLDP-EXT-ODVA-MIB.mib
- 28.OSPF-MIB.mib
- 29.PTPBASE-MIB.mib
- 30.IEEE8021-AS-MIB.mib
- 31.IEEE8021-BRIDGE-MIB.mib
- 32.IEEE8021-ST-MIB.mib
- 33.IEEE8021-Q-BRIDGE-MIB.mib

MIB tree

```
 | iso(1) \\ | -std(0) - iso8802(8802) - ieee802dot1(1) - ieee802dot1mibs(1) \\ | | - ieee8021paeMIB(1) : IEEE8021 - PAE-MIB.mib \\ | | | - ieee8021SpanningTreeMib(3) : IEEE8021 - PAE-MIB.mib | | - ieee8021SpanningTreeMib(3) : IEEE8021 - PAE-MIB.mib | - i
```

SPANNING-TREE-MIB.mib 1-org(3) |-dod(6)-internet(1) |-mgmt(2)-mib-2(1) : SNMPv2-MIB.mib |-system(1) : RFC1213-MIB.mib |-interface(2) : RFC1213-MIB.mib |-at(3) : RFC1213-MIB.mib : RFC1213-MIB.mib |-snmp(11) |-ospf(14) : OSPF-MIB.mib : RMON-MIB.mib |-rmon(16) : BRIDGE-MIB.mib, P-|-dot1dBridge(17) BRIDGE-MIB.mib, Q-BRIDGE-MIB.mib : IF-MIB.mib |-ifMIB(31) |-etherMIB(35) : EtherLike-MIB.mib |-private(4)-moxa(8691) |-product(600) : mxGeneralInfo.mib, mxProductInfo.mib. |-general(602) : mxGeneral.mib, mxDeviceIo.mib, mxDhcpRelay.mib, mxDhcpSvr.mib, mxEmailC.mib, : mxEventLog.mib, mxGene.mib, mxLocator.mib, mxManagementIp.mib, mxPoee.mib, : mxPorte.mib, mxRelayC.mib, mxSnmp.mib, mxSwe.mib, mxSysLoginPolicySvr.mib, : mxSyslogSvr.mib, mxSysPasswordPolicySvr.mib, mxSystemInfo.mib, : mxSysTrustAccessSvr.mib, mxSysUtilSvr.mib, mxTimeSetting.mib, : mxTimeZone.mib, mxTrapC.mib, mxUiServiceMgmt.mib, mxRte.mib, mxMms.mib, : mxPtp.mib, mx1588.mib, mxIec6185093Profile.mib, mxIeeeC37238Profile.mib mxModbusTcp.mib, : mxEip.mib, mxProfinet.mib, mxTrackinge.mib |-switching(603) : mxSwitching.mib |- portInterfacce : mxPort.mib, mxLa.mib

|- basicLayer2

: mxLhc.mib, mxQos,

mxVlan.mib				
I	I	1	- layer2Redundar	ncy : mxRstp.mib,
mxTrv2.mib, mx	TurboChain	.mib, mxDuall	loming.mib	
1	I	1	- layer2Security	: mxStcl.mib,
mxRlps.mib, mxl	Pssp.mib, n	nxPsms.mib, m	nxDot1x.mib, mxRad	lius.mib, mxLp.mib,
mxDhcpSnp.mib	, mxIpsg.m	nib, mxMab.mil	o, mxDai.mib, mxMa	csec.mib
1	1	1	- layer2Diagnosic	: mxLldp.mib,
mxTcst.mib, mxF	PortMirror.m	nib, mxRmon.n	nib, mxFiberCheck.m	nib, mxTracking.mib
1	1	1	- layer3Diagnosic	
1		1	- layer2Multicast	: mxIgmpSnp.mib
1		1	- layer3Multicast	
1	1	-routin	ıg(605)	
1	I	1	- I3Genral :	mxIpIf.mib, mxArp.mib
1	1	1	- unicastRouting	:
mxUnicastRoutin	gTable.mib	, mxStaticRout	e.mib, mxOspf.mib	
1	1		- multicastRouting	g :
mxMulticastRout	ing.mib, m	xPimSm.mib		
1		1	- I3Redundant	: mxVrrp.mib
1		-poe(6	608)	: mxPoe.mib
1	-snmp	V2(6)-snmpMo	odules(3)	
1		-snr	mpFrameworkMIB(10) : SNMP-
FRAMEWORK.mil	b			
1				
-ieee(11	.1)-standar	ds-association	-numbers-series-sta	ndards(2)-lan-man-
stds(802)-ieee80)2dot1(1)-i	eee802dot1mil	bs(1)-ieee8021Span	ningTreeMib(3)
			: IE	EE8021-SPANNING-TREE
MIB.mib				

MX-NOS Rail Version V1 - User Manual

Severity Level List

This is a list of severity levels and descriptions, which are based on CVSS vulnerability classifications.

Severity	Description
Emergency	System is unusable
Alert	Action must be taken immediately
Critical	Critical conditions
Error	Error conditions
Warning	Warning conditions
Notice	Normal but significant condition
Infomational	Informational messages
Debug	Debug-level messages

Moxa Inc.

Copyright © 2024 Moxa, Inc. All rights reserved. Reproduction without permission is prohibited. Trademarks and logos are copyrights of their respective owners.